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Abstract

: In this paper, a new model, which is a Takagi-Sugeno fuzzy model, for mobile robot is presented. A controller, consisting of two loops the

one of which is the inner state feedback loop designed for stability and the outer loop is a PI controller designed for tracking the reference

input, is suggested. Because the robot dynamics is nonlinear, it requires the controller to be insensitive to the nonlinear term. To achieve this

objective, the model is developed by well known T-S fuzzy model. The design algorithm of inner state-feedback loop is regional pole-

placement. In this paper, regions, for which poles of the inner state feedback loop are lie in, are formulated by LMI's. By solving these

LMT’s, we can obtain the state feedback gains for T-S fuzzy system. And this paper shows that the PI controller is equivalent to the state

feedback and the cost function for reference tracking is equivalent to the LQ( linear quadratic ) cost. By using these properties, it is also
shown in this paper that the PI controller can be obtained by solving the LQ problem.
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1. Introduction

The wheeled mobile robot and its control schemes have been
studied by many researchers with various degrees of application and
success {1-6]. Most of these studies are concentrated on the
development, control and planning the strategy of mobile robot. But,
because of the wheeled mobile robot is modeled and controlled by a
nonlinear system framework, its treatment is very complicated and
conservative.

In this paper, a new model, which is a Takagi-Sugeno fuzzy model,
for mobile robot is presented. A controller, consisting of two loops
the one of which is the inner state feedback loop designed for
stability and the outer loop is a PI controller designed for tracking the
reference input, is suggested. Because the robot dynamics is
nonlinear, it requires the controller to be insensitive to the nonlinear
term. To achieve this objective, the model is developed by well
known T-S fuzzy model. The design algorithm of inner state-
feedback loop is regional pole-placement. In this paper, regions, for
which poles of the inner state feedback loop are lie in, are formulated
by LMI’s. By solving these LMI's, we can obtain the state feedback
gains for T-S fuzzy system. And this paper shows that the PI
controller is equivalent to the state feedback and the cost function for
reference tracking is equivalent to the LQ( linear quadratic ) cost. By
using these properties, it is also shown in this paper that the PI
controller can be obtained by solving the LQ problem
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2. Fuzzy Modeling of Wheeled Mobile Robot

2.1. Dynamic Modeling of Wheeled Mobile Robot

The structure of the mobile robot, considered in this paper, is
shown in Fig. 1. The relation between the forward velocity and the
wheel angular velocity is described by

i)

where, v and ¢ are forward and rotation velocities of the robot,
respectively, and r is the ratio of the wheel. And b is the
displacement from center robot to center of wheel. The kinetic
equation is’
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Fig. 1. The structure of robot
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In order to derive the dynamic equations, we now define some
variables.

1, : robot inertia except wheels and rotor

I,,, : motor rotor inertia for wheels and wheel axis

1,,, : motor rotor inertia for wheels and wheel diameter
m : mass of robot except wheels and motor rotor

m,. : mass of wheels and motor rotor

The dynamic equation of a of robot is described by[4,5]
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where, A is Lagrangy multiplier,  is the torque of each wheels,
and d is the displacement from the center of mass to the center of
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In order to eliminate the Lagrange multiplier, we select the null
space of A(q) as

cbcos¢ chbceosg
cbsing chsin g
S =
(9) 1 0
0 1 @
then, equation (3) becomes
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Equation (5) is a type of nonholonomic equation. This type of
system cannot be linearized by using the state feedback.

We now present a LPD system model for the mobile robot.
Equation (5) becomes
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In equation (6), the variable ¢ must be selected as a parameter.
Because of the term g~ , the dynamic equation is not linear with
respect to the parameter value ¢ . After simple algebraic
manipulation, we can obtain the LPD system representation of
mobile robot system[7]. Define the state variables, input and the
output as

120 20y, 33 26,5, 20,

then, the state space representation of mobile robot is
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b (= bo) mc2b2 +13 +1W
W2 Ame™* I + 2mc™b* 1, + 21T, + 12
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Amc b 17 +2mc*b’ 1 + 2101 +1.

In the equation (7), controllability matrix [AO’BO] is
controllable and [Al,BO] is controllable except when the
variable ¢(t) =0.

2.2. Takagi-Sugeno Fuzzy Model of wheeled Mobile
Robot

The fuzzy model proposed by Tagaki and Sugeno is described by
IF-THEN rules which represent local linear input-output relations of
a nonlinear system.[8] The main feature of a T-S fuzzy model is to
express the local dynamics of each fuzzy rule by a linear system
model.

The i-th T-S fuzzy model is [8]

Ifz(H)=M, and....and Z,(t)=M,,

x(t) = Apx(r) + Bju(r)

i=4L2,--,r (8)
¥(1) = Cix(t),

The final outputs of the fuzzy systems are inferred as follows:
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Because of the elements of matrices AO, BO and C are
constant, fuzzy model for wheeled mobile robot described by the
equation (8) becomes

If §(ty=M;

L2, r

{)'c(t) = I:AO + Ali:l x(8) + Bou(t) i = (10)

y(1) = Cx(2),

The final outputs of the fuzzy systems are inferred as follows:
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él w; (2(1)) {[AO + Ali:| x(t) + Bou(t)}
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The equation (11) is a state-space representation of wheeled
mobile robot in which terms Ay, By and C are constant , and in
which the only term A; is dependent on the term ¢(¢) which
equal to the deference of velocities from the right wheel to left wheel.

3. Control of Mobile Robot

‘We are now state a controller structure presented in this paper, and
a new control design algorithm for mobile robot.

3.1 Controller Structure

The controller presented in this paper consists of two loops, one of
which is the inner state feedback loop designed to reduce the
nonlinearity of the plant and the outer loop is Pl(proportional-
integral) control loop designed to satisfy the performance
requirements, ie., tracking error, overshoot, etc. The controller
schematic is shown in Fig. 2.
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Controller
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Fig. 2. Controller structure for the robot

3.2 State Feedback Design by Regional Pole-placement
The control input for inner state feedback loop considered in this

paper is

w)= £ by OF, (WO)xE) + ()
J=1 ’

(12)
r
A [Fo + jél h;(z()F, (p(t))} x(£) + v(£)
the inner closed loop dynamic equation is
x(t) 2 A,x(1) + Byv(t) (13)

where,



r r
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The inner state-feedback loop is designed by regional pole-
placement. The LMI region is defined following definition[9].

Definition 1. LMI regions are convex subset D of the complex
plan characterized by

T *
D={zeC:L+Mz+M z} (14)

where M and L are fixed real matrices, and Z and Z* are
complex valued scalar and its complex conjugate pair.
The matrix valued function

*
fD(z)éL+Mz+MTz (15)
is called the characteristic function of the region D .

In this paper, a complex region where the inner closed loop poles
are lie in is described by figure 3.

Figure 3. D Region

In the figure 3, the region D is the common region of tree
regions, i.., inner parts of the conic sector, left part of the vertical line,
and interior region of a circle. The characteristic function and its LMI
representation of the region D is consisted of tree parts. The
characteristic function and its LMI representation of a conic sector is

* *
—cosf(z—z ) sinf(z+z )

froe (D) =( sin 0(z+z*) cosB(z—z*)j

T . T
—cos9(AClX—XAcl) s1n¢9(Ach+XA )

sin 0(AdX + XACTI) cose(AClX — XACTI)J 0
<
cl (16)

X>0
The characteristic function and its LMI representation of a vertical
line is

Frine(D=(z+2)-2h
A, X +XAl -2h<0
X>0 an
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The characteristic function and its LMI representation of a disk
with center at (0, 0) and radios r is

fD(z>=[” ¢ J
Z —-r

T
-r XAcl <0
Ach -r (18)
X>0

Following tree theorems describe the regional pole-placement
conditions and parts of the main results of this paper.

Theorem 1[9]: The closed loop poles lie in the LMI region 2
D ={ze C:L+Mz+MTz*}

where,

= <[] ]
X<, k<m JE i<, k<m
if and only if there exists a symmetric matrix X satisfying
following four inequalities.

T
(X +myA X +mAl] <0
<j.k<m

(19)
X >0

proof) Proof of this theorem is omitted and refer Chilali and
Gahinet’s work [9].

We are now state a local pole placement of i-th fuzzy model.

Define, ¥ = Fy X, Y; 2 ;X  then

placement is summarized by theorem 2.

conditions of local pole

Theorem 2 : The closed loop poles lie in the LMI region D if
and only if there exists a symmetric matrix X satisfying following
inequalities.
[/1ij +mjk(A0X + A;X + BYy + BY)
T
+mp (AgX + Ay X + BYy + BY) i g <O 20)
X >0

then, the i-th state-feedback gain matrix is

Fy= Yox'l, . -1
proof) The proof of this theorem is very simple extension of the
results of Chilali and Gahinet’s work [9].

The regional pole placement conditions of the global T-S fuzzy
model are stated by following theorem.

Theorem 3: The closed loop poles lie in the LMI region D if
and only if there exists a symmetric matrix X satisfying following
inequalities.
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then, state-feedback gain matrices are

-1 1

F0=Y0X , Fj=Y«X

J
Proof) Omitted. Because the proof of this theorem is simple
extension of the results of Chilali and Gahinet’s work {8].

The design procedure is summarized as formulate LMI and solve
it. The LMI to be solved can be obtained by rewriting the equation
(21) in to forms of the equation (16), equation (17) and equation (18).
Solution can be obtained easily by using LMI TOOLBOX in
MATLAB.

3.3 Design of PI Control

For the mobile robot, the reference input signal varies rapidly, and
the design requires small tracking error, fast response, and small
overshoot. These requirements are easily satisfied by using the well-
known PI controller. The general description of the PI controller is

v(1) = K pe(t) + K [ e(t)dt (22)

Based on the definition of the state variables, and after simple
algebraic manipulation and some modification, equation (22)
becomes

6, 6
ot gl o o]

G4 (1)

23)
=-[k; Kplxty+[K; Kplx, (.

We note that the equation (23) show that the PI controller
described by equation (22) is equivalent to the state feedback. And
hence the closed loop dynamic equation is obtained by

4y — BFy

r r
+3 Bi(ze) Z hi(z(t))[A,'—BFj—B[Kl i Kpj
i=l j=1

x(t) = ]] x(1) 24)

+B[K; Kp oy +d@)
where,

A2 E {(Al_B A )(¢(t))} (1) + other noise terms.  (25)

In the equation (25), the term E {(A|~BF])(¢(1))} means the
error between the actual system and model.
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In order to translate the PI-control problem in to LQ optimal
problem, some modification is needed on the closed loop dynamic
equation. It is described as follows

(1) & Apx(r)+ Bi(e) +d(t) (26)
where,
r r
Ap=| 49 -BRy+ T hi(z(t))]él k()| 4-BF; ]

,
0= I hjeolK, Ky o
j=

d(t)=B[K; Kp Jogn+d)

The PI controller must be designed to guarantee robust
performance, i.e., well tracking the reference input. For satisfying this
objective, let us consider the following cost function for i-th model

min J = [[e’ (£)Qe(t) + vl.T GLAGI @n

by using the definition of state, error, input and after simple algebraic
manipulation, equation (27) becomes

min J = [ [ Q2] Queg -2 Qg 57 (1) R (1))

(28
= (T Q5T ()RT; () + 1] Qrxg ~22T Qyxg i
where,
o =c’oc
The minimum cost is obtained by using the relationship
- S TR AP, Py,
minJ = minJ = [[x" Qpx+V; (1)RV; (¢)]dt 29

where, K is the solution of following Riccati equation.

1

T -1 T
KAg +Ap K -K;BiR™ BoK; +Q =0 (30

The cost function described by the equation (29) is equivalent to
the general LQ cost. The PI gain is obtained by

T -1.T

T
[K IiK Pi]=—R B K; 3D

By using the cheap control properties, solutions of ARE described
by equation (30) become unique and easily computed.

34 Controller
The control input suggested in this paper is described by

r .
. 31
+ X hi(BUNK; Kp 1x;(t)
" ML Ep



The design procedure is design state feedback and the next is PI
controller.

The stability of the closed loop is guaranteed because the inner
loop is designed by robust pole-placement algorithm and the outer
loop PI controller is designed by LQR-algorithm which known as
robust optimal controller.

4. Simulation

In simulation, the robot considered is MIROSOT soccer robot, and
detailed specifications are summarized in the table 1.

Table 1. The specifications of MIROSOT robot

Size 7070 x 70 mm
‘Wheel diameter 45 mm
Rpm 8000
Gear ratio 8 : 1

The mass of the robot is 0.0612 Kg m/sec” and the mass of wheels
is 0.0051 kg m/sec’ . And other parameters used in this paper were

b=35mm, ¢c=r/2b,d =10mm.

The robot inertia except wheels and rotor is 0.05 Kgcm se02
and motor_rotor inertia for wheels and wheel axis is 0.0176
Kgcmsec™ . These parameters were actually measured and
computed for MIROSOT robot designed Yujin Robotics corp. In this
paper, the maximum velocity of the wheel was the maximum
velocity of the motor specification.

By using parameters described above, state space matrices for the

mobile robot are
0 01 0 0 0 0 i
w000 oo o 0o
0710 0 0 o 1710 0 40.7370¢ 405002 ¢
0000 0 0 -30.50026 40.7370¢
0 0
0 0 fo o1 0
el o | <03
0.1055 -22.0917 0001
220917 0.1055

Membership functions of this paper are shown in the figure 4.
System matrices, state feedback gains for pole-placement, PI-gains

are shown by the table 2 which is shown in the last page of this paper.

Simulations by using designed controller are shown in Fig. 5 to
Fig. 11 for various possible input signals. The sinusoidal, pulse and
saw-tooth signal was selected as a test signal because these signals
are frequently used for the mobile robot test. Fig. 5 is a sample of a
noise profile used in this paper. The maximum value of noise is
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selected as 15 percent of maximum value of the wheel velocity. This
type of noise is added to control inputs in every simulation.

Fig. 6 and Fig. 7 are simulation results for the sinusoidal reference
inputs. In the Fig. 6, the desired and actual velocities are shown.
Tracking errors are shown in Fig. 7.

Fig. 8 and Fig. 9 are simulation results for the pulse command
inputs. It is shown in the Fig. 8 that tracking errors jump at t=0 and
t=5 because the signs of the command signals e change. Also, it is
shown in the Fig. 8 that these abrupt changes in the reference signal
also could be overcome by the controller presented.

A

+ ¥ V V —P

-30 -15 0 15 30

Figure. 4. Membership functions

15% of max velocity

L
01 0.2 03 0.4 05 06
Time sec

Figure. 5. Sample of noise profile

Velocities
20 v T v ™ T

— Actual velocity RW
==+ Actual velocity LW
~== Desired velocity RW
------ Desired Velocity LW

Velocity rad*pi/sec
o

L . 1 L L L L L
1 2 3 4 ) 6 7 8 9 10
Time sec

Figure. 6. Desired and actual velocities
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08 S " .“;:‘:“ -== Desired velocity LW4
v
5 i ]
o \‘\\
& Sy
o 2 o} ]
2 % AN
a i ‘\"\
g £ st - 1
8 g ~.
2 k] -~
2 > s
“ o} “~
15}F
20 L . N . C L
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g [ 2 3 4 5 3 7 8 s 10 Time sec.
Time sec.
. . . . Figure 10 Desired and actual velocities of saw signal
Figure. 7. Errors for sinusoidal signal g g
Velocities
20 . . . . . Emors
—— Actual velocity RW 30 T T T T T T v T T
~== Actual velocity LW
15 weeeee Desired velocity RW of
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o
5 2 15¢ ]
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8 2 0} p
® 5h 1 S
> [t}
h
“10p 4 5 p
-15 ] 0
Nt &
20 N NI Ly L
6 1 2 3 4 5 6 7 8 9 10 5 : . . s X : s M
] ) - c 1 2 3 4 5 & 7 8 9 10
Figure. 8. Desired and actual velocities for pulse Time sec.
signal Figure. 11. Errors of saw signal
Errors
2 — - — : .
Error RW Zooming Error Signal
Ewor LW T T T T T T T T T Y v
0t i noise power. 80% of max(velocity)
0348f -
10} ] 0.3475} E
g
a 0347} J
30 r
8 o 0.ME5 | i
w =
-0+ ] D346+ 4
0.3455 _
20k J
0345} ,
20 N . . . R \
¢« t+ 2 3 4 s 6 7 8 8 1 03445 i
Time sec. s L : s L ' ! ) X ' L
01t 012 013 014 015 016 017 018 019 02 021
Figure. 9. Errors of left and right wheels for pulse Time sec.
signal Figure. 12. Enlarging error signal
Figure 7 and figure 9 shows that noise signals added to the input
channels cannot affect to the response. The figure 12 is the enlarging Fig. 10 and Fig. 11 are simulation results for saw reference inputs.
result of the error signal when reference inputs are sinusoidal signal In the Fig. 10, the desired and actual velocities are shown. Tracking
and noise power is 30% of maximum velocity. errors are shown in Fig. 11
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Table 2. Simulation parameters, state feedback gains, Plgains
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System matrix Al State-feedback gain Pl gain
Q=1001, R=0.00011
-30 1.3036 -1.2960 0.0286 59854 54.7421 -54.2148 310.3 0.0280 314.9062 0.0063
12960 -1.3036 5.9854  0.0286 -53.6897 -55.2573 0.0280 0.0280 0.0063 314.9062
-15 -0.6518 -0.6480 00286  5.9854 27.3743 -26.4229 310.30.0280 314.9062 0.0063
06480 -0.6518 59854  0.0286 -26.1604 -27.6254 0.0280 0.0280 0.0063 314.9062
0 0 0 00286 59854 00065 13689 310.3 0.0280 314.9062 0.0063
0 0 55.9854 00286 13689  0.0065 0.0280 0.0280 0.0063 314.9062
15 06518  0.6480 0.0286 59854 -27.3613 29.1608 310.3 0.0280 314.9062 0.0063
06480 06518 5.9854 00286 288983 27.6384 0.0280 0.0280 0.0063 314.9062
30 13036  1.2960 00286 59854 -54.7291 56.9527 310.3 0.0280 314.9062 0.0063
-1.2960  1.3036 55.9854 00286 564276 552703 0.0280 0.0280 0.0063 314.9062

The figure 12 shows that the response of the robot is not affected
by noises added to the input. By this result, it is noted that the
proposed controller guarantee the robust stability with model errors
and the robust performance with input noise.

5. Conclusion

In this paper, we studied the modeling and control of a wheeled
mobile robot. This paper presents tree main results.

The one is T-S fuzzy model of wheeled mobile robot which has
two driving wheels. The T-S fuzzy model of wheeled mobile robot
presented in this paper is very simple in the form and can be easily
treated in the design of controller.

The control structure presented in this paper consists of two loops.
The first one is the state feedback loop and the other is PI control
loop. The state-feedback loop is designed for the poles of the state
feedback loop lie in the desired region. For achieving this objective,
regions, in which poles of the state feedback loop are lie, are
formulated by LMI equations and a algorithm of computing state
feedback gains is presented which is the second main result of this
paper.

The last one is PI controller. The cost function of command
tracking of PI controller transformed in to the LQ cost and it is shown
that the minimization of tracking cost is equivalent to the LQ optimal
cost. By using these properties, the PI gain is obtained by solving LQ
optimal control problem.

This paper shows that the presented controller have robust stability
and performance with modeling error and noise added to the input
channel.
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