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Abstract

This paper reports the development work carried out in respect of a proposed application of Neural Network approach for the Korean Next
generation Reactor (KNGR) now referred as APR-1400. The emphasis is on establishing the methodology and the approach to be adopted
towards realizing this application in the next generation reactors. Keeping in view the advantages and limitation of Artificial Neural Network

Approach, the role of ANN has been limited to plant status or to be more precise plant transient monitoring. The simulation work carried out
so far and the results obtained shows that artificial neural network approach caters to the requirements of plant status monitoring and
qualifies to be incorporated as a part of proposed operator support systems of the referenced nuclear power plant.
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1. Introduction

The application of artificial neural network (ANN) or more
commonly referred as the Neural Network (NN) to the operation of
nuclear power plants has become a favorite subject for the researcher
world over. This is due to the advantages offered by this approach for
the problems, which, earlier seemed intricate in nature and could
have been difficult to solve using mathematical methods or heuristic
logics. It is evident from the available literature that neural networks
are increasingly being applied to nuclear power plant operations [1].
Various applications of NN in nuclear power plant include, plant
wide monitoring, measurement of operational parameters, signal
validation, diagnosis of normal conditions, modeling plant
thermodynamics, to increase efficiency, fuel loading pattern
optimization, reactivity surveillance, classification and prediction of
critical heat flux, etc.. Although the available literature in the area
of application of NN approach to NPP operations shows that this
approach is being efficiently used to solve many problems, however,
the degree of success, in terms of real-time application of this method
and the lim#ations it poses are not clearly reported. This is due to the
fact that the information involved in this approach is complex and
less understood. For instance, there is no well defined rule for
incorporating the number of nodes in the hidden layer. There are
some literature which observes that the number of nodes in the
hidden layer should be around three times the number of nodes in the
input layer [2]. However, this observation could, at the best, be
considered applicable to the specific problem under study and could
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not be used as a guiding generalized factor in designing the neural
network. Similarly, it is argued that the input values should be
normalized between 0.1 and 0.9 instead of 0 and 1. This is done to
the ensure linear scaling of input values and alleviate saturation
problem associated problem with the sigmoidal function. However,
the availability of fast processing speed using the advanced
computers hardly poses any problem if the input variables are
assigned the values between 0 and 1 including ‘0’ and ‘1’. This
argument has been demonstrated in this paper. Then there is this
issue of ‘how much’ training could be considered enough to make
the neural network to be called as robust. An attempt has been made
to discuss the issues mentioned above in the succeeding sections in
this paper. If the selected patterns are assumed to be representative of
the actual plant scenario than the developmental work presented in
this paper and the earlier work done by the author [3] qualifies to be a
benchmark simulation exercise on plant status monitoring for nuclear
power plants.

The section 2, discusses the basic concept associated with the ANN
modeling for plant status monitoring. Section 3 presents the
modeling procedure adopted for plant status monitoring and
architecture of the network. The methodology used for training of the
network has been discussed in section 4. The results of the
simulations, including the recall tests performed have been presented
in section 5 and finally the conclusions of this study are given in
section 6.
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2. ANN Model

The earlier work carried out on transient identification [3] and the
subsequent survey of literature on similar problems has amply
demonstrated that the application of feed forward multilayer ANN
comprising of one input layer, one hidden layer and one output layer
forms effective architecture for reactor status monitoring type of
problems. The input nodes which receive the signals from the plant
are connected through the hidden nodes to the output nodes, which
finally gives the ANN output. The input layer consists of a set of
variables (x|, X2, X3, ....... x,) and the output layer consists of set of
...0,). If the target output is to predict
only one variable as a function of the variables x;’s, then the output is

activation values (0;, 03, 03, ..

a single variable o. The relationship between these associations can
be represented as follows[4]:

O:C{,+ZC,.¢i(xl,x2,x3, ..... x,) (D

i=l

where, @ are nonlinear polynomial functions. Instead of modeling
an explicit functional form the ANN relates o, with x; using a
network of connection weights between pairs of nodes of adjacent
layers. The node in the ANN sums the product of the products of the
input and connection weights from the nodes of the previous layer
and then limits it by a nonlinear threshold function. The weighed
sum of the inputs for the j™ node in a layer k is given by

_ ko (k=1) (k)
netj—Zw,.jxi +0b; (2)
i

where W;jk) is the connection weight between the i node in the
k-1layer and j* node in the k layer, X ,( D is the output from the
" node in the k-1 layer, and bj.") is the bias associated with the j”
node of layer k and it produces the effect similar to adjusting the
threshold function of the processing node.

For calculating the output of a node, the weighed sum of the inputs
available from equation (2) is processed using an activation threshold
function. There are many functions available for this purpose.
However, depending on the nature of problem these functions are
applied in the ANN. The sigmoid function is widely used as an
activation function. For this problem the sigmoid function can be
represented as follows:

X = 1+ exp(l—net‘k’) )

J
Apart from Sigmoid function two more activation functions were
used for the problem under study. These functions are ‘Tansigmoid’
and a linear function called ‘Pureline’{5]. The use of these
functions in the design of this network has been discussed in the

succeeding section of this paper.

3. Plant Status Monitoring and ANN
Architecture

The underlining principle used for the reactor status monitoring is

that each reactor state can be associated using a ‘unique pattern’ of
the plant symptoms. These symptoms include the reactor pre-trip,
trip and analogue instrument readings of various plant parameters
available in the control room of the plant. Whenever, a plant transient
occurs the affected input signals coming to the control room of the
plant changes its state and form a pattern which can be used as an
indicator of the stabilized state of the plant.
Accordingly, the signals required for identifying various reactor
states were identified. Table 1 gives the list of the signals available in
the plant control room of KNGR. It may be noted that the value of
various parameters are indicated in the table can be considered as the
typical values used for this simulation and need not be assumed as
the final value used for implementation in the design of Instrument &
Control System of the plant.

Table 1 Reactor Trip Parameters

Parameter (Unit) Nominal Trip Setting
Full Power
Variable Overpower (%) 100 125
Hi Log-rate (%) 0 6
Hi LPD (kw/ft) <14 20
Lo DNBR 1.79 >12
Hi Pressurize Pr. (psia) 2250 2425
Lo Pressurize Pr. (psia) 2250 1750
Lo SG Water level (%) 82 45
Lo SG Pr. (psia) 1070 870
Hi Cont. Pr. (psia) 0-5 14*
Hi SG Water level (%) 82 94
Lo Reactor Coolant flow (%) _ 80 *60

Legends : Hi: High, DNBR: Departure from Nucleate Boiling
Ratio; LPD: Local Power Density; SG: Steam Generator; Pr..
Pressure. * Assumed value

Table 2: Input vector / pattern parameters

No. Code Symptom description

1 PT-1 SG 1 low pressure

2 PT-2 SG 2 low pressure

3 PT-3 Containment pressure high

4 PT4 SG 1 Low level

5 PT-5 SG 2 Low level

6 PT-6 SG 1 differential pressure low
7 PT-7 SG 2 differential pressure low
8 PT-8 SG 1 level high
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9 PT9 SG 2 level high parameter the values were normalized between zero and 1. Say for

10 PT-10 Pressurizer pressure low instance the range of the instrument used for monitoring the

11 PT-11 Pressurizer pressure high pressurizer pressure is 0 to 3000 psia, then the value of trip setting of

12 PT-12 Log rate high 1700 becomes 0.7 as the normalized value of the above parameter.

13 PT-13 DNBR low These normalized values were used in assigning the value of

14 PT-14 | Local Power Density high instrument reading for pattern formulation.

15 PT-15 Variable over power The parameter listed in the above table was used to generate the

16 PL.16 Containment pressure v. high pattern. One pattern composed of 13 each reactor pre-trips, trips and

17 17 SG 1 low pressure analog readings. It may be noted that the digital reactor protection

18 T18 SG 2 low pressure systems in KNGRs have been designed using four redundant channel

19 19 Containment pressure high and follows. ?/4 coincidence logic for enhanced safety reliability

20 20 G 1 Low lovel and availability. However, this study being demonstration exercise

we have used inputs from Channel A only. The reason for the same

21 T-21 SG 2 Low level i . i

I 2 SG 1 differential prosoure low is that m the. real-time ANN model of the plant the 2-out-of-four
- - processing will be done by a model called preprocessor module. In

B 12 SG?2 differential pressure low this module apart from the 2/4 processing, the normalization of the

Za T2 SG 1 level high analog parameter will also be performed. Once the processing of the

LS 125 SG2level high input data is over the data will be supplied to the ANN. In retrospect,

26 T-26 Pressurizer pressure low the

27 | T-27 | Pressurizer pressure high same ANN configuration may be utilized for the future real-time

28 | T-28 | Logratchigh application in KNGRs. Table 2 shows the list of input symptoms that

2 | T2 DNBR low forms a skeleton of one vector / pattern for ANN.,

30 ;T30 Local Power Density high Actually, the design manual and the associated matrix table lists

3l T-31 Variable over power 24 reactor states to be identified using the above symptoms.

32 T-32 Containment pressure v. high

33 R-33 SG 1 low pressure Table 3: Nomenclature of the reactor states

34 R-34 SG 2 low pressure

35 R-35 Containment pressure high Transient No. | Transient Description

36 | R36 | SG1Lowlevel TR Reactor Operation Normal

37 | R37 | SG2Lowlevel TR2 Feedwater Temp. decrease

38 | R38 | SG1differential pressure low TR-3 Feedwater flow increase

39 | R39 | SG2 differential pressure low R4 ISOGADV

40 | R40 | SG1levelhigh TR-5 Turbine trip

a1 R41 SG 2 level high TR-6 Loss of condenser vacuum

42 R-42 Pressurizer pressure low TR-7 Loss of feedwater flow

43 R43 Pressurizer pressure high TR-8 Loss of RC flow / 1 RCP seizer

44 R.44 Log rate high TR-9 RCP shaft break

45 R45 DNER low TR-10 Uncontrolled CEA withdrawal at low power

4% R46 Local Power Density high TR-11 Inadvertent de-boration

47 | R47 | Variable over power TR-12 CEA ejection

48 | R48 | Containment pressure v. high TR-13 LocA

Legend: ISOGADV: Inadvertent operation of steam generator

Legends: PT: Pre-trip, T: Trip, R: Instrument Readings

Using these p ter trip settings and the instrument range atmospheric dump valve, CEA: Control Element Assembly, LOCA

(which was assumed in this experiment as the data on precise range Loss of coolant accident.

of instrument is not available at this stage) for the corresponding

114



Proposed Neural Network Approach for Monitoring Plant Status in Korean Next Generation Reactors

Table 4: Input pattern for ANN training
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However, for ANN training only 13 reactor states have used as for
the remaining 9 reactor states the designers are either yet to finalize
the extra parameters or the analog instrument readings such that these
transients also form a unique patterns to enable its identification. The
list of the 13 reactor states for which the ANN was trained has been
shown in Table 3.

Though the plant is at advanced stage, there were some areas
where the required information was not enough to finalize the ANN
modeling requirements. Hence, some assumptions were made. It was
enswred that these assumptions in no way compromised the
capability of the future real-time ANN. These assumptions were as
follows:

a) While formulating the patterns it was assumed that all the trip
parameters will have corresponding pre-rips and for each trip
parameter there will be analog instrumentation available in control
room of the reactor.

b) Pre-trip setting was assumed to be 10% lower /higher than the
corresponding trip setting.

¢) During the normalization process it was observed that some
parameters instead of having fixed nominal value, vary between a
range of values. For such parameter the mean value of the indicated
range was considered as the value of the node for normal operation.

d) Only Channel A parameters and trips considered for this study.
It was assumed that the pre-processor module will handle 2-out-of-4
logic and normalization of the trips / variables. This has helped to
reduce the size of the ANN. One could expect ANN to be more
robust with pre-processor module installed.

Considering the above the final matrix table was prepared for 13
reactor conditions. Table 4 shows the patterns / vector formulated for
ANN training.

For identifying these transients various options were worked out.
The selection of the option had a bearing on the design of the neural
network. The two modes which

Table 5: Reactor transient identification matrix

TR-1 1/0{0/0/0]0[/0[{0{0;0]0]0]0
TR-2 0/1{0/0/0]0;0,0/0]0]0;0;0
TR-3 0/0[{1)0{0]0/0]{0]0{0]0|O][O
TR-4 000/ 1{010{0,0/0}]0]0]0/0
TR-5 0/0/0[0/1{0{0]0/0]0]0]0]0
TR-6 0/0{0{0/{0/1/0{0/0/0j0{0]0
TR-7 0/ 0[{0)0{0j0j1]0]0O[0]0]O]O
TR-8 0/0/0,0[{0[{0]0]1;0/0]0{0[0
TR-9 0/0/0/0/0{0/0j0]1]0]|0]0|O
TR-10 0jojojo/ofofojfojoj1{0]|0lO
TR-11 0/0/0/0[0;0{0j0]0]0]1]0]0
TR-12 0] 0{0j0j0]0)]0[0j0O{0O]O]|1[O0
TR-13 0]0/0)]0[0j0]0jOj0O[0]0]0O]1
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were found to suit the requirements of transient
identification was a) Identify the transients by their respective
numbers and b) Use a 13X13 matrix for identifying these
transients. Both the options were studied while designing the
network. Only one node was required at the output layer if
the transients were to be identified using its respective
number. However, the results were found to be not very
encouraging with this mode. No definite reason could be
attributed for non-convergence of the error when option 1
was used. However, the use of 13><13 matrix was found to be
working well. This choice necessitated to have network with
13 nodes at the output layer. Accordingly, a 13<13 matrix
was used for ANN training with ‘1° placed diagonally in the
matrix making a unique array of for each transient as shown
in Table 5. A multilayer feed forward network architecture
was selected with three layers: one each for input layer,
hidden layer and output layer. Based on the requirements of
reactor status monitoring it had 49 (48 nodes for plant signal
and 1 bias node) nodes in the input layer and arbitrarily ~ 80
nodes in the hidden layer and 13 nodes in the output layer.
Fig. 1 shows the ANN model implemented for plant status
monitoring,

4. Network Training

The Backpropagataion network (BPN) algorithm was considered
appropriate for implementation of training scheme for the network.
Initial assignment of the weights was random in the range +0.1 to -
0.1. The BPN algorithm attempts to minimize the overall mean
square error (MSE) between the desired and the actual output for all
the output nodes over all the input patterns by iteratively adjusting
the weights. The training was carried out in batch mode in using the
Neural Network Toolbox in MATLAB environment. The objective
here was to select the network parameters, the training rate,
momentum coefficient and number of nodes in the hidden layer such
that it allows the convergence of the network to achieve a target
MSE value of 1E-5. This required a parametric study to be
performed using the above said parameters and the network does not
get stuck in the local minima. Apart from this the other and rather
secondary objective was to arrive at a network configuration such
that the convergence of MSE is achieved in optimum number o
epochs. As part of parametric study, repeated trials were made with
the activation functions, viz, ‘sigmoid’, ‘tansigmoid’ and the linear
function ‘pureline’, in the three layers of the network. These
functions are available in the MATLAB library.
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Plant
Signals

Input
Layer

Output
Layer

Fig. 1: ANN Architecture for reactor status Monitoring

Table 6 Final parameter of Network

Parameter description Value
Number of layer 3
Number of nodes in input layer 49
Number of node in hidden layer 100
Number of nodes in output layer 13
Training rate 0.2
Number of epoch required for training 6248
CPU Time required for training (min) 12
Error target le-5
Activation function - input layer Sigmoid
Activation function — hidden layer tansig
Activation function — output layer pureline

It may be noted that successful convergence could be achieved
only after arriving with the configuration as shown in Table 6, ie.
sigmoid, tansig and pureline transfer function in the input, hidden
and output layer, respectively. The convergence of MSE during the
training of the network could be achieved in 6248 iterations or
epochs as shown in Fig. 2.

5. Testing of Network by Simulating near real-
time scenarios

Having completed training of the network successfully, the next
phase was to perform the recall tests on the network to demonstrate
the feasibility of ANN methodology for the target application.

The testing of the network was carried out by simulating the plant
conditions based on the monitoring and diagnostic requircments of

the plant as follows:
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Fig. 2: Convergence of error during training of Network

5.1 Learned patterns

The first requirements which comes from the plant is that the
network should be capable of identifying all the pre-defined
scenarios for which the Emergency Operating Procedure exists. To
cater to this requirements the recall tests were performed on the
trained network. Table 7 shows the result of the this test. By having a
look at the values, which are ~ 1.0 (while the other values are ~ 0.0),
on the diagonal elements of the matrix, one can be sure that network
has capability to identify the scenarios with required accuracy.

5.2 Unlearned patterns

These patterns were based on the real-time operational experience
of the plants. The objective was to check the network behavior for 1)
situation which the network had not encountered earlier and b) the
anticipated plant conditions for which network behavior is expected
to be on the well defined lines. Accordingly, four simulation tests
were performed as follows:

5.2.1 Sensor failed data

This test was performed using 3% transient namely ‘feedwater
flow increase’. To simulate the sensor failure data the 29" node was
modified by changing the original value of from 1 to 0. The result of
the simulation test as shown in Table 8, demonstrates that the ANN
was able to identify the transient number 3 in spite of the fact the
information was incomplete.

5.2.2 Noisy data

Often it has been seen during reactor operations that noisy data
makes it difficult for the operator to arrive at certain conclusions. The
background signal suppresses the original signal or the background
noise makes the signal to register for

117



International Journal of Fuzzy Logic and Intelligent Systems, vol. 3, no. 1, June 2003.

PolIe]s JuaISuer)
9L16'0  6900°0- TOTI'0  9T90°0- OLLT'O0  9TSE'0- €L8T'0 LSIO0- +SYI'0  90EE0  €11L°0- 60100 LTL60 (@ |9y  aiojpq  din
80190  ¥ZOT'0  16S1°0- OEIL'0  TESO'0- 8BFI'0- L96T0- 8LSI'0 L6100 TP8E0  TISI'0  9pLE0- 6S8L°0- (¢ | 93uls Jo oouasald p
(prs ayesun uo)
8eYT'0- 16€T°0- S600°0 +9SE0  90LT0- 1€91°0- 6VCST THO9'0  L9STO  8ITL'O0  8L9T0- OTYEOD  1¥6T0- Iollo uoneIque) ‘¢
¥CLO'0- 8VLO'O- 06L0°0- 10100~ T1€0°0- 92S0'0  €L90T 8VLT'0 SOTO0  €810°0- €9£0°0- SELOO- 0990°0- osiou [um ere(] ¢
6€10°0- 9vPC°0- S6CCT0  L9%1I'0  98LT0  TPIOO- OF90°0- SO9T'0- +vIvb'0 L0000 T890°T LEOOO  80THO BJEp SIn[Ie] I0SUS |
1591 [[€331 JO SINSIY urned paureaun

suroned pauresun YIm $)s3) [[899Y 1§ 9[qe],
1001 £0000-  1000°0 L0000 1000°0-  +$200°0- 80000 0000°0-  L£00'0- 97000 ¥100°0- 67000~  €£S00°0 el-dL
91000 86660 $000°0 81000 0100°0-  $800°0- L0000 $000°0-  TH00'0- 09000 000°0-  8¥00°0-  0600°0 T1-dL
£1000- 61000 06660 $0000-  ¥000°0 95000 L000°0- 00000 6£00°0 2€000- L0000 6200°0 L8000~ 11-4L
1100°0- 11000 00000 78660 60000 1900°0 60000~ S000°0 $€000 1£00°0- <0000 1200°0 8L00°0- 01T-dL
1100°0- 60000~ 20000 90000~  0000'1 L100°0 10000 €0000-  €1000 $000'0- 10000~ 900070 $000°0- 6-dL
1000°0- 90000~ 0000 ¥000°0-  #000°0 0c00'T £000°0- L0000 61000 £100'0-  6000°0- 10000 $T00°0- 8-dL
£100°0- 60000 $000°0 L0000~ 0000 00'0- 86660 10000 21000 §T00°0-  +¥0000- 01000 €00°0- LdL
$000°0 §000°0- 10000 £100°0 10000 I¥00°0-  £000°0 9666'0  0Z00'0-  TTOO'O 0000~ 81000~  SVOO'O 9-dL
¥100°0 $£00°0-  £000°0 L1000 6000'0- SS00°0- 80000 00000- 91660 82000 L0000- 81000~ SOI00 AL
0000°0- 12000 60000 9000'0- 80000~ T1£00°0 ¥000°0 20000~  SY00'0-  £8660 00000 20070 $£00°0 yiaL
S000°0- ST00'0 20000 1000°0- 80000 L2000 90000~ LOOO'O 61000 £0000- 16660 £1000-  0¥00°0- £dL
2200°0 6100'0- S000°0- +200°0 L1000- 6010°G- T100°C 8000°0- (9000~ L9000 $0000-  0S66°0 15100 UL
6100°0- 91000 20000 £200°0-  £000°0 ¥9000  60000- T000'0- ¥S00°0 7500°0- 1000 $¥00°0 £066°0 4L
JUISURI],
$I0)I9A [[BO9Y 10083y

surapjed poures] yim SI[NSaI ST} [[OY 7 9[QRL

118



Proposed Neural Network Approach for Monitoring Plant Status in Korean Next Generation Reactors

the condition when there is no activation. This may happen due to
voltage pick-up or superimposition of other transient noise on the
original signal. The pattern no 7 on ‘loss of feedwater flow’ was
selected for this simulation. This condition was simulated by a)
reducing the strength of the original signal. To achieve this the value
of node 1 was modified from 0 to 0.1 (representative of voltage
pickup) and the value of nodes 10, 19 and 20 were changed from 1 to

0.9 (to reflect reduction of signal strength due to background noise).

As could be observed from the results given in Table 7, the network
could successfully handle this situation and in spite of noisy data the
transient 7 could be identified.

5.2.3 Calibration Error (on unsafe side)

This is a problem associated with process instrumentation or any
analog type of systems. This condition results when the calibration of
root instrumentation goes wrong or due to some drift problem the
instrument reads more (for safe decreasing trend) and due to which
the reading shown on the instrument is more than the actual reading.
This causes the associated trip system to be ineffective. This test was
performed using transient number 7. To simulate this condition the
value of nodes 20 (SG 1 level low) a trip was modified from 1 to 0
and the value of node 36 (analog reading of SG 1 level) was changed
from 0.45 to 0.55. In all the value of two nodes were changed in the
original vector representing transient 7. The result shows that the
value of 7™ node is 1.5249. A close look at the results for this
transient shows that value of node no 7 stands out compared to other
nodes. Hence, it can be concluded that this transient could be
identified successfully by the network.

5.2.4 Presence of single trip before the transient sets
in

The trips and alarm checks are performed in the control room by
manually generating the trip in single channel. Now in case the
transient occurs during the time when one trip parameter channel was
remaining registered, this could be deviation from what the network
has been trained. This condition was created by changing the value
of node number 15 (variable overpower trip) from 0 to 1 in transient
vector 4 on IOSGADV (Inadvertent Operation of Steam Generator
Atmospheric Dump Valve). The natural language meaning of this
change is that when this transient occurred that time the overpower
trip was already ‘in’ in control room. It may be noted that the
network failed to identify this scenario. To further investigate this
problem this test was repeated on transient number 1. Here the node
1 was modified from 0 to 1. But the results were fuzzy. Though the
transient number 1 was identified with reasonable accuracy, the
transient no. 13 which represents LOCA condition was also
identified though with less intensity than transient 1. However, the
results are not acceptable. It may be noted that this type of scenario
will not be encountered by the ANN as in real life the network will
be fed after 2-out-of 4 processing in the pre-processor. Hence, this
trip will get filtered out and what the network will see is the actual
transient as it was modeled during the training.

6. Conclusions

An approach for modeling the plant transient and its identification
using a three layer neural network has been proposed for the Korean
Next Generation Plants. The recall tests performed demonstrate the
feasibility of using this approach as part of operator support system
for nuclear power plant. The testing carried out also brings out the
limitation of this methodology. However, as discussed in the
previous section these limitations do not, in any way, make this
approach restrictive for its applications to plant operations. It can
always be argued that more rigorous testing will go a long way in
making network more robust. It is expected that as more data and
information are available, the modeling of the transient would be
more accurate which in turn enable training of the network more
effective.
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