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Bayesian Inference for Switching Mean Models
with ARMA Errors?

Young Sook Son2?), Seong W. Kim3), Sinsup Cho?%

Abstract

Bayesian inference is considered for switching mean models with the ARMA errors.
We use noninformative improper priors or uniform priors. The fractional Bayes factor
of O'Hagan (1995) is used as the Bayesian tool for detecting the existence of a single
change or multiple changes and the usual Bayes factor is used for identifying the
orders of the ARMA error. Once the model is fully identified, the Gibbs sampler with
the Metropolis-Hastings subchains is constructed to estimate parameters. Finally, we
perform a simulation study to support theoretical results.

Key Words @ switching mean model; multiple change points; ARMA error; noninformative
improper prior; fractional Bayes factor; Gibbs sampler; Metropolis-Hastings
algorithm.

1. INTRODUCTION

Change point problems originally arisen in quality control have received interests in many
fields. The bulk of studies on change point problems in frequentist perspective are found
in Csorgé and Horvath (1997). Our interest in this paper is in the change point analysis of
time series models with switching means using the Bayesian approach.

Ohtani (1982) presented a Bayesian procedure for estimating parameters of the switching
regression model under noninformative priors when the subset of regression coefficients shifts
and the error terms are generated by the AR(1) process. Albert and Chip (1993) discussed
Bayesian inference via Gibbs sampling for autoregressive time series models with Markov
jumps in mean and variance. Garisch and Groenewald (1999) dealt with Bayesian change point
analysis in the linear model with correlated errors. They assumed the multivariate nomal prior
for a vector of regression parameters, the noninformative improper prior for the variance of
white noises, and an uniform prior over (-1,1) for the correlation of errors. Two well-known
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criteria are used for identifying the number of change points along with their positions. They
are the arithmetic intrinsic Bayes factor (AIBF) of Berger and Pericchi (1996) and the
fractional Bayes factor (FBF) of O'Hagan (1995).
Consider a simple regression model,
Y, =p+te. (1
We often call this a constant mean model. If a set of time series data, {y,t=1,2,..., #n},
is generated from the model in (1), the error term {&} will have the structure explaining

autocorrelations of time series data. The model in (1) generally assumes that the mean is
constant over all time periods. But a time series with a globally constant mean is practically
very restrictive. There are rather many cases that the mean changes slowly or abruptly as
the time passes.

In this paper, we consider the locally constant mean model, M b d,.pq With multiple mean

changes at unknown time points d,=(d,,d,, ..., d;), assuming the ARMA(p,q) error. The
proposed model is as follows:

Mo, t=1,2,...,d1,

Ky, t= d1+1,d1+2,...,d2,

My gpo° Ye= & + 4 )

Hp—1, t=dk_1+1,dk._1+2,...,dk,

M, t= dk+1,dk+2,...,n,
where p;_#Fu; for j=1,2,...,k and {eg follows an ARMA(p,q) process, that is,
0, B)e,=0,Bay .

Here, 0,(B)=1—¢B—¢,B*—--—¢,B’ and 6,B)=1—9,B—6,B*°—-—0,B", where
B is a backshift operator, and {a,} is a sequence of N(O,oz) white noises. For this model],
Loty oo iy Ok, di D, 6,=(&1, b3,...,8,), and 8,=(8,,0,,...,0,) are all unknown
parameters. For the stationarity and invertibility of ARMA(p, q) error, ( ¢,, 8,) must be in

the region C,X C,, where

CoxCu={( 8,, 8,) : 0y(x)=0, Ix|>]1 and O,(»=0, |y |>1}.
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We denote the model My ,, with ~2=0 in the model M, , ,, as the no-switching model

with pgo=pg;=--=y, in (2), which is known as a stationary and invertible ARMA(p,q)
process. The model M, , ,. is a nonstationary process in the sense that the mean of

process is not a globally constant.

We use the fractional Bayes factor (FBF) of O'Hagan (1995) as a Bayesian tool to
determine the number of change points and the usual Bayes factor to identify the orders of
ARMA(p,q) error. We propose a ‘“binary segmentation” procedure. At the first level, we
compare the models between no change point and a single change point using the FBF. If the
test is in favor of the change point model, we locate the change point. Then we compute two
FBF's similar to what we have done after dividing the data into two parts by the change
point. We continue to conduct tests until no more change points are found in a subsegment.
For the model being fully identified, we estimate parameters using the Gibbs sampler with the
Metropolis-Hastings subchains.

When performing the Bayesian analysis for models including stationary and invertible

ARMA structure, the most cumbersome problem is the specification of C,xC, for every p
and ¢. We transform the region C,XC, into the region (—1,1)?%? to overcome this
difficulty. This transformation is often used when integrating on ( ¢,, 8,) for computing

Bayes factors or randomly drawing ( ¢,, 8,) in the Gibbs sampler (cf. Marriot, et al.

(1992); Varshavsky (1995); Son (1999, 2001)).

The contents of this paper are as follows. In Section 2, we build a matrix form of the
model and prior assumptions, Also, the exact and explicit likelihood functions are presented. In
Section 3, the posterior probabilities of competing models are computed using the FBF for the
identification of models. In Section 4, we construct the Gibbs sampler with the
Metropolis—Hastings subchains for the estimation of parameters. In Section 5, some simulation
results are provided. Finally, we finish this article with short concluding remarks in Section 6.

2. PRIOR ASSUMPTIONS AND LIKELIHOOD FUNCTION

Suppose that Y, Ys,..., Y, follow the process given in (2). Then, its matrix form is

formulated as

My 4,50 ° Y=Xpspte, 3)

Where Y=(Y1, YZ’ ey Yn)’y HLp= (#0;/“1’-'-’ﬂk),’—€=(€1’62"”’671)I’ and
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'ldl -le ‘O'dl -le ‘O'dl

lo-a Q¢-4 Qa-a, o Doy

Xp= lo-0, Q4-0, - Dop-g
sym 1=

is an #x(k+1) matrix with 1,( 0,) representing a aX1 column vector with ones(zeros)
as its all elements. Since {e&;} follows a stationary and invertible ARMA(p,q) process,
E(Y)=X, ¢, and Cov(Y)= o’sz, » Where V,,is an #X#x matrix composed of only &,

and @, For the no-switching model, My ,, , its matrix form is
MO,ﬁ,q : Y=/10 -ln+—€ (4)
We assume noninformative priors. Then the prior specifications are as follows:

7 gy 0) o 0%,  up €R*1=(—00, )k (o0, 50, (5)
7y, 0) < 07°, py eR=(—0, ™), 0<a<o >0, 6)

m( &y, G, D=1cxc( b, 8,)] Volume(C,xC,),

where
1, if (¢,,0)eC,xC,,
Icxce( @, 8,)=

0, otherwise .
Throughout this paper, the superscript N implies the use of noninformative improper prior

or its result. The priors of discrete parameters, %k, d, p, and ¢, are assumed as uniform
priors with each support, K={ky, &y, ..}, Di={ du, dp,...}, P={p1,p2,..}, and

Q={q1,q, ...}, respectively. Here, all elements of D, are restricted so that all the
parameters of each model generated by change points can be estimated and all elements of

K,P, and @ are nonnegative integers. Finally, under the assumption of independence among

sets of parameters, the prior of the switching model, M, , , ., for k=1,2,... is

75 dy, 24,0,0, 0, &5 0 < 7( dp) - 1 4,0+ 7( ,, G,lp, ) %)

and that of the no-switching model, M, ,, , is
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70 (0, 0, 0,a, By, 8,) < 70 (1,0) - 7( By, 0,19, ).

Now, let an observed sequence of Y be y={y{,¥s,...,¥, , then from (3) and (4) the
full likelihood functions under model M, , ,, and model M, ,, can exactly and explicitly

written as

_n X
L( dy, tr,0.0,0, 8, 8,1y) =Q2rd® 2|V, 12

'eXp{_"élo__z(y_Xk#k)’V;,};(y—XkJék)}, (8)

and

_n 1
(i, 6,0,q, By, 0,1¥) =Qnd®) 2|V 12

. exp{—#(y—ﬂo 1) Vi y—u 1, )},

where the specifications of V,, and | V,} | are shown in Leeuw (1994).

3. MODEL SELECTION BY THE FRACTIONAL BAYES FACTOR
AND THE BAYES FACROR

Consider the problem of identifying a mean change mode!l with multiple change points given
a time series data, y = (y,, ..., y,,)'. First, we are going to test the switching model M,
with a single mean change against the no-switching model M, Now, We define the
following function of data y, a change point d, and a constant & (0<b<1) for the model
M, 4.5,and Mg,

N
PEEEQ M (a, d».p.q)( ylb
N
ﬂez;:;eg m (Oyﬂ.q)( vl b

Bh( dy, y10) =
where

Ml a0 (310 = [ [ [ 00,0 8, 8)

* {lk( dk’ L, 0, 0,4, _ép, _aq ] y)}bdﬁk dad( _épx _eq) (9)

and
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m%.ﬂ,q)( yj b) = fC,XC,‘I;J fR ﬂ,(l)v(luo,o-sps q, _ép; _Qq)

Al o, 0, 0,0, by, 8, | MY dugdod( ¢,%x 8,). (10)

When computing the integrals in (9) and (10), the integrations for _g; ug, and o are
easily solved by using the kemnels of the multivariate normal density for _g, the normal

density for g, and the inverse gamma density for ¢. Specially, we use the following identity

to integrate over _y,,
(Y“X/e .Lék)’Vp_,é( y— X J_lk)
={( y—X, .,.ék)'f‘Xk( .Z_lk_ Jék)}’V;,};{( y— X, _Zk)+Xk( _/H\Ia_ .Ek)}

=Spsat ( se— _Z.lk)'(Xk'V/z_,(l;Xk)( Lp— 14,
where
Sk.ﬂ.q =(y—X, .ﬁk)'V;é( y—X, .Zék),

_Qk =(Xk’Vp_,<11Xk) -le' Vp_,(ll y.

But the region C,XC, with higher order of p and ¢ than 2 is not explicit, and the
integration over ( $5, 8,) is very complicated. To circumvent the difficulty in identifying
C,xC, with high order p and ¢, there is an useful reparameterization. Following
Barndorff-Nielsen and Schou (1973), Monahan (1984), and Jones (1987), there is one to one
transformation between ( ¢,, 8,) and partial autocorrelations  ( _y,, _¥,), where
o=V s, Y20 » T pp) a0d ¥, =¥ g1, Y g2» -» Y qq), that maps C,X C, onto (—1,1)*"7
Let zP= (zl(k),zz(k), ...,zk(k)),k= 1,2, ..., 0. Then z,‘(k) is calculated from the recursive
relation, z[(k)=z,-(k—l)— rkz,(ef_,-l), i=1,2,..,k—1, with 21(1)= 7, as the initial setting and
zk(k)= 7, as the final setting. Finally, set ¢,= 2 @ For example of p=3, ¢,=n—7rr
— 73, $y=1ry— 773t #7973, and g3 = 73.

After integrating over u, and ¢ in (9), we can let
Stra=1X¥ Vs Xel V(X 9 V5 a(Xe, 9

using the fact given in Shilov (1961) that for some matricies, A and B,
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XL 1
|JA'Al? - | (I=P4)B || =I(A,B)(A,B)l *with P4=A(A’A)'A" and |l x| =(x 2"
for some column vector x. Finally, after transforming from ( ¢,, 8,) to ( _,, _x,), the

final form of (9) is obtained by

I'{-%—(bn+s—k—2)} -2 dy)

—ZL(bn+s—l) 9 %(3—9 . lz-(lm—k—l)

M 400l Y10 = - g(s, dp, 0,9, X, y1b), (1)

where
% (bn+s—k—3)

b
l Vp,q _ll 2] Xk, Vﬂ,q _le'

-%—(bn+s—k—2)

&(s, dp, 0.0, X4, ylb)=f R 2p, 20d 2% 2,X12)

[—1,11%%

|(Xa, 9) Voo~ (X, 9)]
Vs is an nxn matrix with ( 4, 8,) inV,, beng replaced by ( z,, ¥7,), and

o n0 [ o] o) i ([ oo} (4]
with B, (@, ;) denoting a rescaled beta probability density of a random variable 7; defined

on (-1,1) with two parameters, @; and a,. Similarly, the final form, m" .59 (¥ 10), of (10)

is obtained by replacing 2=0, X,= 1,, and omitting the terms on the change point d, in

equation (11).

There is the fractional Bayes factor (FBF) of O’Hagan (1995) as a Bayes factor which can
be used for Bayesian testing in spite of arbitrary constants in improper priors. The FBF is
classified as a ‘default’ or an ‘automatic’ Bayes factor free from arbitrariness of
noninformative improper priors. The default Bayes factors are simpler and more automatic to
use since they don’'t need setting hyperparameters under conjugate priors or considering the
imaginary constant as in Spiegelhalter and Smith (1982).

The FBF for testing the switching model M; with a fixed change point d; against the

no-switching model M, is defined as follows:
Bi"( d)=BY( dy,y|b=1)-By( d, y|b),

where b={(the size of a minimal training sample)/ n is the. common use of & in O'Hagan
(1995) when robustness is not major concern. The minimal training sample implies the part
of full sample with the minimal sample size to guarantee the finiteness of both

M a.50(¥16=1) and mYy, (¥ |b=1). I is sufficient to check how the minimal

training sample size for the model ml\(’l_ 4.00(¥16=1) s, since the model
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m a4 50(¥1b=1) is a model including the model mf ,,(y|b=1). Four observations

as a minimal training sample must be continuously sampled each two observations to estimate

each pg, 4, and ¢ at both sides centering the change point, since all the priors except
to, #1, and o have finite supports. For example, a minimal training sample of size 4 with a
change point d) is {¥4-1,Y 4, Y a+1> ¥ a4, +2)-

Finally, the posterior probability of the change model M; is given by

-1

POM 9= X {ﬂ{BFl?F( d)} "+ d1|y>}“] , (13)

d,e D pl

where p1(py) is the prior probability of the model M;(M;,) being true, and

pegegml\{l- dx,ﬁ.q)( ylb=1)
gEQmI\(/l. dl,p_q)( .VIb= 1))

(d|y)= (14)

dIE Dl re

is the posterior probability of the change at each time point.

Theoretically, we can detect whether there is any change or not by the probability of (13),
and find where the change occurs by the probability of (14). But the computation of the
denominator in (14) for all dj€eD; takes a lot of times. Setting p=0 and ¢=0 in the
computation of (14) much more reduces the computation time and gives a reasonable result
in the practical simulation of Section 5. We think that the mean change and the change point
can be roughly detected under the assumption of random errors, since the ARMA(p, q) error

process is stationary.

For each group of data divided centering the change point with the maximum posterior
probability of the change, the Bayesian procedure for detecting the existence of a single
change is recursively repeated until any more changes are not detected. If the number of

changes and the positions of change points are assumed to be determined as % and d,,
respectively, in order to identify the orders p and ¢ of ARMA(p,q) errors, we use the
usual Bayes factor,

mY G apn( Y1 0=1)
m" G oaro(¥16=1)"

BA(lk, d,, 5,9k, d,.p'.q')( ylo=1 = (15)

for testing the model M, , ,, with ARMA(p,q) errors against the model M, 4 , .

(p#p" or q#+q) with ARMA(P',q’) errors. Finally, the posterior probability of each model
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M, 4 ,, with ARMA(p, q) errors is given by

Dy o - -1
P(Mk’ dub.a Iy)= p’eg’eQ { pl),q {B(k: di, b, 9k, dk,ﬂ'.q‘)( ylb: ]‘)} } ’ (16)

where p, (b, ;) is the prior probability of the model M, 4 , (M, 4 , ) being true.

4. ESTIMATION BY GIBBS SAMPLING

When only the number of changes, %, and the orders of ARMA(p, q) errors are known,

we are going to estimate parameters, ( dp up 0, ¢,, 8,). After combining (7) and (8),
and transforming parameters ( ¢,, §,) into ( ¥,, 7,), the joint posterior distribution of

( dp, up 0, 75, %, for fixed k,p, and ¢ is given by

_L u—
a( dy, o 0, 2, 2l ¥) <o " VS, T2 exp{z—i;( y=Xp u) Vi, (y—X, -Iék)}-(17)
The full conditional posterior densities for Gibbs sampling from equation (17) are as follows:
[Ozl dk9 Lpy Xp» -Zq] ~IG{%(7‘+S—'1),2/Q( dka Eiy Xps _Zq)})

where IG{a, 8} denotes the inverse gamma distribution with parameters (@, 8) which of density
is given by n(Ala, B)={ B°I @)} (P ~‘@Ve "V 44

A di, 4y 250 2)=(y=Xp 1) V0o (=X 1)

[ .Ekl d,,o, s 14]~Nk+1{ _Zék,Uz(X'k V‘!p,q_-le)—l},

where

= (X" Vp,q_le)—lX'k Vp.q_l y.

[ dil 24,0, 25, 2,]~8( dp) =exp{— & di, s, 25, 2,)/(2D)}.
Finally,

1 .
[ Yo Iq' dk, ,ﬁk,o'] -~ h( Zps _Zq)zl V*p'q ll 2. CXD{—E%?Q( dk, Hry Xps Iq)} .ﬂlﬂ, —Zq)-

Since the conditional posterior densities of dj and ( z,, ¥,) are not the standard form, we

have to run the Metropolis—Hastings (MH) algorithm of Hasting (1970).

The MH algorithm for generating d, is performed as follows:
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0 . . . .
© as the value of d, in the previous iteration of

STEP 0 : Set the initial value d,
the Gibbs sampler and j=0.

STEP 1 : Generate d,;=( d,,ds,...,d;) from the discrete uniform distribution with a
support D,

STEP 2 : Compute c=min{1,g( d,)/ g d, (’))}.

STEP 3 : Generate U from Uniform(0,1) density.

d,, if U<c,

4., if Ue.

STEP 5 : Set j=j+1, and go to STEP 1.

STEP 4 : Set dk(’+‘)={

The MH algorithm for generating ( ¥, ,) is performed as follows:

STEP 0 : Set the initial values, 1,,(0)=(71,72,...,7,,) and 2, P=Cn', »n, .., 7))
as the values of 1, and ¥, in the previous iteration step of the Gibbs

sampler and j=0.
STEP 1: Generate 7;(¢=1,2,...,p) and ¥,;(i=1,2,...,q9) independently from the uniform

distribution with a space (-1,1). Then, set  7,"=(7,7,..,7,) and
2 =Cr’s 7 7).
STEP 2 : Compute d=min{l,2( 2", x,")/h( 1,,(’), _yq(’))}_

STEP 3 : Generate U from Uniform(0,1) density.

C 2, 2, if U<d,
( Ip(j), .Zq(j))’ if U>d

STEP 5 : Set j=j7+1, and go to STEP 1.

STEP 4 : Set ( Ip(jﬂ)’ _zq(jH))Z[

At each iteration of Gibbs sampler, ( ,, 2,) is retransformed to ( ¢,, 4,).

5. Simulation Study

We carry out a simulation study to check the Bayesian inference procedure for multiple
switching mean models with ARMA errors discussed in the previous sections. All the
computations are completed using the MATLAB (The MATH WORKS Inc., 1999).

Three time series data sets with each two change points are generated from the following
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models where ¢ = 1, and shown in Figure 1.

2% (a) Switching Mean Model with AR(2) errors and two change points t=100, 200.
T T T T

20 —
-
15 -

10 0 50 100 150 200
(b) Switching Mean Model with ARMA(1,1} errors and two change points t=50, 100.

50

40 - —
-~
30 f -

20 2 £

50

35 A 1 1 1
0 50 100 150 200 250 300

Figure 1. Plots of three simulated time series.

(i) A switching mean model with a sample size #=300, two change points, d,=(100,200),
#,=1(16,18,15), and the AR(2) error with ¢;=0.3 and ¢;=—0.5.

(i) A switching mean model with a sample size »=150, two change points, dy=(50,100),
#,=1(30,32,35), and the ARMA(1,1) error with ¢;=—0.7 and 6,=0.6.

(iii) A switching mean model with a sample size »=300,two change points, d,=(100,200),
4,=1{(44,42,40), and the MA(2) error with #;=—0.2 and 6,=—0.8.

We set s=1 as the reference prior in the priors of (5) and (6). Also, we assume equal
prior probabilities for each model, that is, po=1p; in (13) and py ¢ =19, in (16).

Table 1 shows the posterior probabilities of switching mean models computed using the
FBF. Concerning the switching mean model with AR(2) errors, at step 1 the posterior
probability of the switching mean model for the data with a total of 300 observations is one
and the change point(cp) is 200 with the maximum posterior probability (mpp), 0.4540.

At the next step the posterior probability of the switching mean model for the first 200
observations is also one and the change point(cp) is 99 with the maximum posterior
probability (mpp), 0.4450. At the last step, each posterior probability of the switching mean
models is 0.1408, 0.1388, and 0.1251, respectively, for three data groups with observation
numbers, 1~99, 100~200, and 201~300, which implies that there is not any more change in
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each data group. Thus, two change points and their temporary positions are assumed as
(99, 200). Similarly, the positions of two change points for the rest of model are roughly put
as (49,100) and (101, 200).

Now, the posterior probabilities of ARMA(p, q) errors computed using the usual Bayes

factor (15) for each switching mean model with two temporary change points are shown in
Table 2. But the computation of integral in (12) must be before solved. We estimate it by

the Monte Carlo method through 200 importance sampling with a joint density of p+¢
independent uniform variates distributed over (—1,1) as an importance density.

Table 3, 4, and 5 present the results of posterior distribution for parameters included in
each model. When operating the Gibbs sampler, the initial values of d, u:, ¥,, and ,
are required. Two temporary change points shown in Table 1 are used as initial values of

d,, and the sample means of data groups divided centering each temporary change point are
used as initial elements of u, . Initial elements of ¥, and ¥, are randomly generated from
the uniform distribution over (—1,1). At step 1 of the MH algorithm for generating d, ,
each element of the support D, of the discrete uniform distribution used as a transition
probability distribution is put as (cp x10), where cp is obtained in Table 1.

In our simulation study, we estimate parameters from one sequence simulated for only one
Gibbs sampler, and burn the first 30% after totally 130% iterations. The iterations of Gibbs

sampler and the Metropolis-Hastings subchains are 100 and 50, respectively.

6. Concluding Remarks

We do not present all the simulation results due to space limit. However, we see that our
methodologies presented in this article yield reasonable results in accordance with theoretical
outcomes. In particular, they work out well for the data sets with larger sample sizes, larger
differences in means, and more strictly stationary conditions. We also point out that larger
sample sizes should be required as the first autocorrelation gets positively higher. When the
positive first order autocorrelation is employed, the resulting data stay above or below means
as time goes by. Meanwhile, the negative first order autocorrelation is employed, the resulting
data fluctuate quite frequently between the mean. Hence, more data in case of the model with
positive first order autocorrelation are required to capture overall pattern of time series than
the case of negative first order autocorrelation. For example, in our simulation study, the first
autocorrelations of the AR(2), the ARMA(1,1), and the MA(2) error model are
0.2, —0.839, and 0.214, respectively. Also, different ARMA(p, q) errors can have similar

values of the likelihood function, and the order (p,q) different from the true value of (p,¢q)
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is can be selected. But, this is the problem similarly applied to the selection by the AIC
(Akaike Information Criterion).

Table 1. The posterior probabilities of switching mean models computed using the
FBF.

Switching mean model | Switching mean model | Switching mean model
with AR(2) error with ARMA(1.1) error with MA(2) error
Obs..no. | Posterior: | -Obs. no. | Posterior | Obs. no. Posterior
cp(mpp) | probability | cp(mpp) | probability | cp(mpp) | probability

1~300 1~150 1~300

STEP 1 1 1 1
200(0.4540) 100(0.3090) 200(0.6633)
stepg | 2% 1 1~100 0.9969 1~200 1
99(0.4450) 49(0.1879) ’ 101(0.5157)
1~99 0.1408 1~49 0.1564 1~101 0.4344

STEP 3 100~200 0.1388 50~100 0.1772 102~200 0.2177
201 ~300 0.1251 101 ~150 0.1662 201 ~300 0.1881

Table 2. The posterior probabilities of ARMA(p,q) errors in switching

mean models.

ARMA(p, @) | AR(2) error | ARMA(1,1) error | MA(2) error
0, 0) 0.0000 0.0000 0.0000
0, | 0.0000 0.0000 0.0000
0, 2 0.0000 0.0000 1.0000
(1, 0 0.0000 0.0002 0.0000
(1, D _J 0.0000 0.5035 0.0000
1,2 0.0000 0.0010 0.0000
2, 0) 0.7258 0.0008 0.0000
2, - 0.2730 0.3004 0.0000
2, 2) 0.0012 0.1942 0.0000
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Table 3. A switching mean model with AR(2) error.

True Parameter Mean S Posm?\iegﬁnbmﬁwer 959 limit_Upper 95% limit
dy; =100 100.0100 0.2245 100.0000 100.0000 100.0000 |
dy =200 200.0000 0.0000 200.0000 200.0000 200.0000
1= 16 15.9657 0.0843 15.9628 15.8241 16.1372
M= 18 . 17.9057 0.0867 17.9042 17.7633 18.0442
Hta=15 15.1829 0.1011 15.1880 15.0262 15.3745

F=1 0.9442 0.0585 0.9316 0.8646 1.0397
$1=0.3 0.4136 0.0401 0.4172 0.3559 0.4589
¢==—0.5 -0.5023 0.0343 -0.5120 -0.5477 -0.4444

Table 4. A switching mean model with ARMA(1,1) error.

True Parampter Mean S -Pﬂsteno&é%;:l?‘l bun‘ir;wer 95% limit_Upper $5% limit
d; =50 50.0000 0 50 50 50
dy= 100 100.0000 0 100 100 100
#=30 29.9534 0.0373 29.9573 29.8863 30.0177
=32 32.0613 0.0398 32.0640 31.9937 32.1254
=35 35.0571 0.0417 35.0604 34.9917 35.1203
o = 1 1.1412 0.1380 1.1352 0.9161 1.3481
¢ =—0.7 -0.7220 0.0380 -0.7301 -0.7796 -0.6505
6:=0.6 0.5531 0.0413 0.5567 0.4887 0.6316

Table 5. A switching mean model with MA(2) error.

Thule Parapeter TR ,?oste@;;l);as;n buuir:mr 96% limit_Upper 9% limit
dy =100 100.77 0.7502 101.0000 100.0000 103.0000
dy =200 200.00 0.0000 200.0000 200.0000 200.0000
o= 44 436719 0.2073 436336 43.3854 44,0041
=42 42.0689 0.1992 42.0803 41.6768 42.3593
1z =40 39,7592 0.1969 39.7505 39.4381 40.1147

A=1 0.9649 0.0801 0.9479 0.8456 1.0958
6,=-10.2 -0.1938 0.0292 -0.1886 -0.2280 -0.1592
0,=—0.8 -0.8888 0.0262 -0.9050 -0.9096 -0.8529
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