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Abstract

An estimation problem of treatment effect for bivariate censored survival data is
considered under location shift model between two sample. The proposed estimator is
very intuitive and can be obtained in a closed form. Asymptotic results of the
proposed estimator are discussed and simulation studies are performed to show the
strength of the proposed estimator.
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1. Introduction

Consider the problem that there are two failure times for each observational unit like a

paired experiment. Let T=(T,,T,) be a pair of nonnegative random variables. The
variables 77 and 7, may represent failure times of paired subjects, times from individuals

of a treatment until first response in two successive courses of a same patients, etc. Under
bivariate censoring, the observable variables are given by Y=(Y,,Y,) and &8=(8;,0),
where Y,=min(7T;,Z;) and &8;=KT;,=Z) (i=1,2). Here Z=(Z,,Z,) is a pair of
censoring times thought to represent times to withdrawals from the study. This type of
censoring mechanism can be found in Clayton(1978), Campbell(1981), Clayton and Cuzick(1985)
and Dabrowska(1988, 1989) among others.

Some methods related linear regression like Lee, Wei and Ying (1993) in the existing
literature address this problem. These regression methods can be used here in the two-sample
problem by setting the covariate 0 for the first sample and 1 for the second. However,
so—called direct procedures for the estimation of two-sample problem would be preferred
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because it imposes fewer assumptions than the regression methods. Meng, Bassiakos and Lo
(1991) and Park and Park (1995) proposed direct procedures of the estimation of treatment
effect for the two-sample problem. They are all inspired Akritas (1986)'s method for quantile
estimation in the shift version of the two-sample problem.

In present paper, we consider the estimation of treatment effect of bivariate censored data
under bivariate censoring. Under location shift model, the treatment effect is defined as the

difference between medians of two failure times. Suppose T =(T;, T3) has the continuous
distribution function F and let F; be the marginal distribution functions of 7°; with density
fi (i=1,2) . For some 40,
Fy()=F\(t—4) for all £0. (1.1)

We can easily see that 4 is the median of the distribution 73— 7 and the treatment
effect 4 is of interest. Another approach for estimating 4 is as follows. Let us denote the
quantile function F; Y(y) (i=1,2) for 0<y<1, F;Y(y)=inf{t: F () =y}

It is easy to show that

B
% fo (F, (0= F (D) dt=4 (1.2)

under the model (1.1). Park and Park (1995) proposed the quantile estimator of treatment
effect from the two independent failure times by using the relation (1.2).

We propose the estimator of treatment effect by generalizing (1.2) to bivariate censored
failure times and establish the asymptotic normality by using some well-known results in
section 2. Simulation studies are presented in section 3.

2. Estimator and its asymptotic properties

Under the model (1.1), for 0<{A8<1, 4 can be estimated by
2=L (B~ BT ar @1
B J 2 1

where F; (i=1,2) is the Kaplan and Meier (1958) estimator of F; (i=1,2) using marginal
sample (Y ;,8;) (i=1,27=1,--,n) respectively.
One reasonable choice of £ is min{F;(D, Fy(0)}, where  is the minimum of two

largest uncensored observation obtained in each sample. This estimator looks same as Park
and Park (1995)'s estimator for the case of independence, but it’s not since the asymptotic
variance of the estimator is different. Major advantage of this estimator is to avoid the
estimation of marginal densities of failure times in estimating the asymptotic variance of the
estimator.

Now we show the asymptotic normality of ‘[71(21—41). This result will be used for



Estimation of Treatment Effect for 1019
Bivariate Censored Survival Data

estimation of treatment effect. Suppose Z=(Z,,Z,) has the continuous distribution function
G and let G; be the marginal distribution functions of Z; (i=1,2). We also let the
distribution function of Y be H and the survival function of Y be H. f‘, E, G and
‘G; can be defined similarly. Then we have H(u,v)= F(u,v) G(w,v) for wu,v>0. Using
(1.2) and (2.1) we have

Fn<21—4>=%foﬂ{f7¢( ETO-FWD) -V By, O-FUN))a. 22

Theorem 2.1 Suppose that B satisfies HFTY(A, F,HA)»0 and
inf o< {(F7H(D)>0 (i=1,2). Then 2 is a strongly consistent estimate of .

Proof. This follows from lemma 1 and theorem 1 in Park and Park (1995).

Theorem 2.2 Suppose that A satisties H(F; '(8),Fy; {(A)>0 and F; (i=1,2) has a
bounded second derivative F;" on [0,F; YBA+¢8 for some Y0 and
inf o< of(F7 ' (9)>0. Then V(22— 4) is asymptotically normal distribution.

Proof. By Bahadur representation of Kaplan-Meier estimator represented by Cheng (1984),
(2.2) can be transformed as (2.3) under assumed conditions;

NN oy 1 sV (F(F (H)— 9 A
V(2 A)—zg( D" fo F(FT(D) dt+ fo R(Ddt (23)

where R,(#) is the remainder term with sup g<<dR,()|= O(n ~(log n)®),

If t=(r,r;) be a point such that H(r,7)>0. Then we know that
Va(Fi(s)— Fy(s), Fo() — Fy($) converge weakly on D[[0,7,1%[0,7,]] to mean zero
bivariate normal process (Wang and Wells (1997)). So by continuity theorem (Theorem 5.1,

Billingsley (1968)) and the property of normal process, V m(Z—J) converges weakly to
normal distribution.

Asymptotic variance o of V n(Z—4) can be computed using (2.3) and the change of

variable technique. Note that “acov” means asymptotic covariance.

108 !
FP = g‘foF 8 fOF (ﬁ)acov(\/—"’(ﬁi(s)”Fi(s))"/Ti(F\i(l‘)—Fi(t)))dsdt

FYB ~FY®

‘2fo fo (V(Fi(s)— Fi(9)),V nl Fy( ) — Fy(9)))dsdt

where
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sAt (_Z’_/ll( x)

(o (2.4)

acov(V n( F(s) = Fi(s) .V n( F{(d) ~ F)) = F Fi( |

(refer section 6.3 of Fleming & Harrington (1992)) and
acov(V n( Fy(s) — Fy(y),V n( F5( — F5(D))

= F(5) Fo(d) fotf% {A 1 (du, dv)-f——%%—;%—@/lz(dv)

A\(duw)+ A (du) Ay(dv) }

. (25)
n H o (u, dv)
H(u, v)

where  Hy(u,0)=Pr(¥>u,8,=1,Y>0), Hy(w,0)=Pr(Yy, Yodv,8,=1), A; is

hazard function of 7;, Ay is hazard function which fail 7 and T, simultaneously. The

formula given in (25) can be derived using Lo and Singh’s (1986) representation of Kaplan -
Meier estimator (Theorem 1, p.456). This is also derived in Wang and Wells (1997).

For estimating 02, a consistent estimator can be obtained by replacing F,-, E, Ay, A
Hy, _1—1'01 by their empirical distribution and Kaplan-Meier estimator, respectively.
Explicitly, assume that Yy; and Yy, (j=1,-,n) are the order statistic of ¥; and

Y,;, respectively. Then second term of asymptotic covariance given in (2.5) can be estimated

by product of ﬁ(s)?g—( P and the following formula;

i {I Yy <Y, 09= D-K Y Yy, 8q= 1}

{nx =
yg;st Y%):Ss " ;ZII( Yz;‘2 YZ(/))

121 (Y1 Y 10, 01i=1,Y3:> Yy)) = (Y 1,2 Y sy, 6 1,=1, Y 2> Y )}

gll( Y1 Yy X le( Y5> You)
XYoo= You- )X Yin— Yie-n)l}.
Asymptotic variance given in (2.4) and the remaining formulas given in (2.5) can be

X

estimated similarly.
3. An illustrated example

We present a numerical example to show the application of the proposed estimator and
compare its result with others. We consider the well-known matched pair data of Holt
and Prentice (1974), which is considered by many authors. We assume the logarithm of

survival times of closely Y, and poorly Y ,; matched skin graft on the same burn patient

follows the model (1.1). The log survival times were recorded like Table 1.
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[Table 1] log(Days) of survival of skin grafts on burn patients

1 2 3 4 5 6 7 3 9 10 11
log Y2 | 157 | 128 [ 1.76+| 197 | 1.20 | 134 | 1.30 | 1.26 | 180 | 1.46 | 1.78+
log Y1 | 146 | 111 | 1.18 | 141 | 1.04 { 123 | 141 | 132 | 163 | 1.17 | 1.60

Jung and Su (1995) and Lee et al. (1993) proposed the estimators of treatment effect in
bivariate censored data. Both methods are based on so-called minimum dispersion statistic.
Lee et al. showed that the Wilcoxon score is generally acceptable. So we choose it for

comparison. Assuming that (log Y7, logY;) follows model (1.1), 95% confidence intervals of
4 by Jung and Su and Lee et al. are (-0.20, 1.24) and (0.12, 0.80), respectively.

Now we calculate the proposed interval estimator for 4. First we have 7=1.63 and
B=1T/11. Therefore we have F; _l(ﬂ)= 1.41 and F, “1(B)=1.57. So the point estimate
of treatment effect is ZJ=(3.626—3.429)/(7/11)=0.310. Using (24) and (25), we get

@ =(0.108+0.100 —2x0.050)/(7/11)>=0.267. So the 95% confidence interval of 4 is
(0.005, 0.615).

We now compare these methods by examining three constructed approximate 95%
confidence intervals. The interval length of Jung and Su’s method is much wider than
intervals based on Lee et al’s and the proposed one. Also Lee et al.’'s method and the
proposed method detect significant treatment effect at 5% level, but Jung and Su do not
detect the difference.

This example suggests the further studies of small sample behaviors. We discuss this
problem in the next section.

4. Simulation and Conclusions

Some simulation studies with 1000 repetitions were carried out to compare the finite sample
(n=20, 40) performance of several estimators of 4, i.e. Lee et al. (1993), Jung and Su (1995)
and the proposed method. Lee et al.’s statistics are based on minimum dispersion statistic and
considered the several types of weights and other methods as mentioned earlier. They showed
rank method with Wilcoxon score performs the best in normal or non—normal case, so we
choose it for comparison.

In the three simulations, we follow the method used by Lee et al. with the different
bivariate distribution. That is, the pairs of failure times (7, Ty) were distributed according
to the bivariate normal distribution with marginal mean 0, marginal variance 1 and the
correlation 0.5, to the bivariate exponential distribution,

Ft, )= "P0+001—-e "N1—e ™)}
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with =1 and
Flt, t)=(e""+e"°~1)~°

with =0.25, by Gumbel (1960) and Clayton (1978), respectively. The Gumbel model with
f=1 represents fairly weak positive dependence while the Clayton model with 8=0.25
represents fairly strong positive dependence. Gumbel and Clayton model failure times are
obtained by the method given in Prentice and Cai (1992). And the censoring times are the
same distribution function to failure times with #=1 for Gumbel model and 8=0.5 for
Clayton model. In this setting, we choose A=( for Gumbel and Clayton model and 4=0.1
for the bivariate normal distribution. All the results are summarized in Table 2, 3 and 4.

In table 2, we can find that the proposed method shows better performance in estimating
location-shift parameter with respect to coverage probability and average interval length when
the marginal distribution is normal. The method proposed by Jung and Su(1995) is very
conservative compared with other methods and the method proposed by Lee et al.(1993) does
not maintain the nominal level.

In table 3 and 4, the marginal distribution is exponential distribution. The proposed method
still works better comparing other two methods. The method given by Lee et al. seems to
have shorter average interval length, but it did not maintain the nominal level.

In overall, the proposed method is recommendable with respect to coverage probability and
the average interval length. However, one should be cautious when the sample size is less
than 40.

All the calculations in this article were programmed in FORTRAN 77 with double arithmetic
precision on a IBM personal computer. Random numbers were generated using IMSL
subroutine. The simulation program is available from the first author.

[Table 2] Empirical coverage probability from bivariate normal distribution with 4= .1

Sample size 20 40
censoring rate of Y1 50.5% 49.9%
censoring rate of Y2 50.2% 50.0%

double censoring 33.5% 33.3%

Jung and Su 0.992 (3.586) 0.991 (1.849)

Lee et al. 0.917 (1.240) 0.938 (0.826)
Proposed 0.899 (1.107) 0.950 (0.794)

* () means average length of confidence interval
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[Table 3] Empirical coverage probability from Gumbel distribution with A4=10

Sample size 20 40
censoring rate of Y1 49.7% 49.7%
censoring rate of Y2 50.5% 50.0%

double censoring 30.5% 30.2%

Jung and Su 0.991 (6.424) 0.993 (2.533)

Lee et al. 0.932 (0.779) 0.948 (0.464)
Proposed 0.932 (0.599) 0.955 (0.550)

* () means average length of confidence interval

[Table 4] Empirical coverage probability from Clayton distribution with 4=0

Sample size 20 40
censoring rate of Y1 49.8% 49.9%
censoring rate of Y2 50.5% 50.0%

double censoring 39.3% 39.3%

Jung and Su 0.996 (4.002) 0.999 (1.973)

Lee et al. 0.931 (0.463) 0.938 (0.284)
Proposed 0.931 (0.476) 0.955 (0.419)

* () means average length of confidence interval
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