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A Penalized Principal Component Analysis
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Abstract

Variable selection algorithm for principal component analysis using penalty function
is proposed. We use the fact that usual principal component problem can be expressed
as a maximization problem with appropriate constraints and we will add penalty
function to this maximization problem. Simulated annealing algorithm is used in
searching for optimal solutions with penalty functions. Comparisons between several
well-known penalty functions through simulation reveals that the HARD penalty
function should be suggested as the best one in several aspects. Illustrations with real
and simulated examples are provided.
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1. Introduction

Dimension reduction has been an important topic in statistics and related fields for a long
time and it has been very useful especially when the data sets include relatively large number
of variables or features. Principal component analysis (PCA; Jolliffe, 2002) is clearly one of
most frequently used method in this area and often giving relatively small number of linear
combinations of variables which can effectively explain the large portion of a given data set.
However, each component still include all non-zero coefficients on all variables and having
problem in interpretation of the linear combination especially when the number of variables is
large.

A number of methods are available to aid interpretation. A common approach is ignoring
any coefficients less than some threshold value, so that the function becomes simple and the
interpretation becomes easier. Jolliffe (1972, 1973) examines some of possible methods which
discard irrelevant variables using multiple correlation, PCA ifcself, and clustering. Cadima and
Jolliffe (1995) noted that this can be misleading. More formal ways of making some of the
coefficients zero are to restrict the coefficients to a smaller number of possible values in the
derivation of the linear functions like {-1, 0, 1} (Hausman, 1982) and variation (Vines, 2000)
on this theme is also possible. Rotation method used in factor analysis is also applicable but
has its drawbacks (Jolliffe, 1989, 1995). McCabe (1984) introduced a new strategy to select a
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subset of the variables themselves and called it 'principal variables.’

Other possible way would be introducing penalty function as in regression analysis.
Recently, Jolliffe and Uddin (2001) applied L penalty function method to maximization
problem of PCA in order to force any irrelevant coefficients in the principal components to
zeroes. He included L, penalty function as an extra constraint to maximization problem of
variance of linear combination of variables and showed that it is more preferable to rotation
methods and several others. We have seen that using L ; penalty function could result in
relatively severe bias for the coefficient estimates and found that hard thresholding penalty
function (Antoniadis; 1997, Fan; 1997) is better in preserving original directions after adding
penalty function in the model.

We compare several well-known penalty functions through simulations and real data sets
and provide promising evidences that the HARD penalty function would be the best in
preserving original directions of component and in other several aspects. Also we have
strong feeling that the proposed method can be successfully applied to high-dimensional PCA
problems with relatively large portion of irrelevant variables in selecting relevant variables.

In Section 2, basics of PCA will be introduced. Adding penalty function to PCA and
modified maximization problem are in Section 3. Simulated annealing algorithm to solve above
problem is included in Section 4. In Section 5, simulation studies and numerical illustrations
with real data set are given. Some discussion is given in Section 6.

2. Principal Component Analysis

Principal component analysis (PCA; Jolliffe, 2002) is a well-known technique for dimension
reduction for multivariate data sets. Several examples of its many applications include data
reduction, pattern recognition, exploratory data analysis and time series prediction.

Suppose that we have p-dimensional data vectors x, #=1, ..., N and sample covariance

matrix S of x with N observations. Usual PCA becomes solving the eigenvalue problem
Sw;=A;w; for j=1,...,q

Above problem is equivalent to the following problem so as finding unknown p parameter

vectors w ; which solves

max w S w; subject to ijw,-=1and wiw;=0 <k

Then the g(<p) principal components of the observed vector x , are
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ci= Wi(x,— % with W=(wi .., w,

such that ¢ principal axes w ; are those orthonormal axes onto which the retained variance
under projection is maximal. The components ¢, are then uncorrelated such that the

covariance matrix S, ¢ » ¢ LN is diagonal with elements A i

3. Penalized Principal Component Analysis

We can consider problem of extending penalized likelihood idea to the PCA for variable
selection in each component. Suppose we have a penalty function p;(6). Then the typical

problems with penalty function becomes to find parameters which maximizes the following
unified "Gain-Penalty” function

Gain( W— N Z‘ 22l

The first term in the above objective function may be regarded as a gain function of W for
the PCA problem with w; as the element of Win its 7#th row and j column and p,( - ) as

a penalty function. Then PCA problem with penalty function becomes

max w; 'Sw;—N Z’x le"(lwifl) subject to w ] w;=1and wj w;=0,

w j

<k

Fan and Li (2001) argued that unibiasedness, sparsity, and continuity as three properties that
a good penalty function should have, and suggested Smoothly Clipped Absoclute Deviation
(SCAD) penalty function as the best one for regression problems. Several well-known penalty
functions including SCAD penalty function are as follows.

BL, p,(Jwg)=Aw;? and it becomes LASSO (L) with p=1 for least squares case.

BMHard Thresholding (HARD) Penalty: (lw 31) =A2—(w ;| —4) 2w} <)
BSmoothly Clipped Absolute Deviation (SCAD) Penalty:

Aw if w;<Aa
wi—2aw ;+ A%
palwy)=1— ’2(%_1’) if A<w<al

(a+DA* i w.zal

2
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Unfortunately, none of three penalty functions satisfy above all three properties simultaneously.
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<Figure 1> Well-known penalty functions

L , penalty function is biased and this cause some serious problem especially when applied to
PCA problems. The hard thresholding (HARD) penalty function is unbiased and has sparsity
but it is not continuous. SCAD behaves like something between L ; and HARD and need two
dimensional GCV (Generalized Cross-Validation) or usual CV to find optimal values for two
parameters, @, and A. Shapes of three penalty functions are in Figure 1. Simulated annealing
algorithm to solve penalized eignevalue problem will be described in the next Section.

4. Simulated Annealing Algorithm

Simulated annealing (SA: Aarts, and Korst, 1989) method, introduced by Kirkpatric, Gelatt,
and Vecchi (1983) is known to give near optimal solutions for problems with many local
optimum. This method is applicable to combinatorial problems like salesman traveling problem
and also to continuous multivariate optimization problems. The main idea of SA is sampling
from a derived distribution according to the given objective or any other function optimize.

Now, let’s define the distribution

u( w)=Cexp(——%;D( w))

with X w)=—w,; "Sw,;+N 21 21 p(lwl). Then the algorithm for finding 1st principal
i=1 )=

component becomes as follows.

B[STEP 1]: Initialization
1. Set initial w from ordinary PCA
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2. Set k=0 (Step function)

3. Set intial temparature ¥, (Temparature at £=0)
4. Set inital number of iteration L (Number of sample at 2=0)
5 Set co=17,
BISTEP 2]: Repeat until convergence.
1. For [=1to L,
(1) Set w +, from neighborhood of w .4
(2) Set W = W 4, if D{w +,) <D(w ).
(3 Set W= w4y, if D(wL,))D(w 0
and exp ([ D w g) — D( w +,)]/cs)> UL0,1]
2. k=Fk+1
3. Set cp=cy x(0.9)*%
BM(OUTPUT]: w

In implementing SA, it is known to be very important to set parameters and initial values
for the model properly in order to get resonable solutions. For the objective function, we need

to provide appropriate intial values for #'s first and then it needs to choose neighborhood of
them for the next iteration carefully. Also parameters in the SA algorithm should be calibrated
properly, too. Here are some details for these issues.

4.1 Initial and iterative orthonormal w's

Initial w's: Coefficient estimates from ordinary PCA would be a very good initial values for

w's in the first and each subsequent component in the penalized PCA.

Second and subsequent components should orthogonal to all previously obtained components.

Hence, it should be considered in finding possible neighbor of w's for each iteration. New
components should still be very close to previous one to guarantee convergence of the
algorithm.

4.2 Parameters in penalty functions

It seems to be enough to consider A's which should be less than eigenvalue for each
component obtained from ordinary PCA and greater than 0. It could be an option to set A as
a function of |g|, absolute value of the Gain function, p, the number of predictors, and an

appropriate multiplier, so that A= »x | g| V 2log(p) with #=(. Clearly, when »=0 it would
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give the same results from ordinary PCA with no constrains. And when 7 x \/_2—155,*—(15 >1
then the algorithm forces all coefficient estimates except only one variable to zero. Hence
optimal # should be between 0 and 1/ \/m. Small experiments with simulated data
sets suggest 7 should be between 0 and 0.2 and the solution tends to include one dominating
coefficient as 7 is greater than 0.2 or so. The parameter ¢ in HARD penalty function is set
at 3.7.

5. Hlustrative Examples

We compared our method with small set of simulated and real data sets. And we
considered several statistiscs to see if there would be any candidate penalty function
preferable in several aspects.

5.1 Simulation results

For any given vector of positive real numbers and an orthogonal matrix, we can find a
covariance matrix or correlation matrix whose eigenvalues are the elements of given vector,
and whose eigenvectors are the columns of given matrix. The data sets are simulated based

on the observation that x is marginally distributed as normal with mean g and covariance
matrix S=A,w,w i'+/12 w, wé-*— et A w, w;,. Further we can set pu as zero without

loss of generality.
The following sets of data are generated 100 times for each combination.

B N (number of obs.): 300, 600

B » (number of var.): 5, 10

M Two sets of eigenvalues and eigenvectors for each p.
B Three sets of # values for each case.

WAl three penalty functions for each case.

We will look at the mean and standard deviation of angles between estimated and true
direction for each component. Especially, mean of zero estimates for true zero (TO: True 0)
coefficients, and zero estimates for non-zero coefficients (FO: False 0) are our concern. Only
parts of result are included in the two Examples following.

Example 1.

Eigenvalues and eigenvectors for the first example are as follows. We set three coefficients of
the first two components as zero and also give relatively larger eigenvalue for the first two
components. Mean and standard deviations of angles between true and estimated directions

plus mean for TO and FO are in Table 1. Boxplots of angles for three sets of # are in Figure
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Eigenvalue:

Vector:

(25,
wy
" 0.949
0
0.316
0
0

0.949

0.316

0.3,
w3
-0.271
-0.163

0.813
0.488

0.1,
Wy
0.11
-0.184
-0.331
0.551
0.735

01)
Ws
-0.12
0.199
0.359

-0.598
0.678

<Table 1> Eigenvalues :

(25, 2, 03, 0.1, 0.1) , with N=300.

B »=0.08
Penal. HARD L1 SCAD
mp. 1st 2nd 1st 2nd Ist 2nd
Eval.
TO 265 279 2.48 264 257 2.66
FO 0.02 0.02 0.06 0.06 0.04 0.04
Mean 0.097 0.097 0.111 0.114 0.103 0.104
SD 0.184 0.184 0.268 0.267 0.226 50.225
B »=0.11
Penal. HARD L1 SCAD
mp. Ist 2nd 1st 2nd 1st 2nd
Eval.
TO 2.8 2.79 2.65 2.64 269 2.66
0] 0.03 0.03 0.08 0.07 0.06 0.06
Mean 0.099 0.093 0.140 0.142 0.129 0.133
SD 0.241 0.243 0.315 0.314 0.268 0.267
N »=0.14
Penal. HARD L1 SCAD
mp. Ist 2nd 1st 2nd 1st 2nd
Eval.
TO 2.91 294 2.86 2.87 28 2.87
FO 0.03 0.02 0 0 0.09 0.09
Mean 0.083 0.063 0.074 0.081 0.151 0.164
SD 0.096 0.104 0.038 0.035 0.328 0.325
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<Figure 2> Boxplots for angles between true and estimated directions (ratio= #)

Results show that the number of true zero.increases and becomes closer to 3 as 7 increases

but FO remains similar in all # values. L is the worst in angles between true and estimates

directions for two smaller #'s but becomes better as it becomes larger so giving us a feeling

that L, penalty seems to be robust wrt. 7

Clearly we can say that with relatively large number of observations and an appropriate 7
our method effectively forces estimates of true zero to zero and at the same time hardly
happen to give zero estimates for true non-zero coefficients. Further HARD penalty seems to

be the best in preserving original directions on the wide range of the # values.

Example 2.

Eigenvalues and eigenvectors for the second example are as follows. We set six coefficients
of the first two components as zero and also give relatively larger eigenvalue for the first
four components. Similar to the previous example mean and standard deviations of angles plus

mean for TO and FO are in Table 2. Boxplots for three sets of 7 are in Figure 3.
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Eigenvalue: ( 3.5, 3, 25, 2, 0.25, 0.25, 0.15, 0.15, 0.1, 0.1)
Vector : wy Wy ws wy Ws Wg Wy wg Wy w1y
0.856 0 -0.224 0 0197 -0.333 -0.004 0 0.004 0
0 0.856 0 0.231 0011 0191 -008 0218 0.059 0.222
0.428 0 0.131 0 -0.344 0289 0162 0.012 -0.117 0.012
0 0 -0.808 0 -0.148 0392 -0.278 0428 0234 0.426
0 0 0 0.863 -0.181 -0.201 0.2 -021 -0.234 -0.213
0 -0428 0 0424 008 0173 -0473 0.19 0.467 0.189
0.107 0 -0.048 0 -0.04 0.433 0.453 0481 -0467 0482
0.268 0 0526 0 -0.063 0428 -0428 0417 0467 0416
0 -0.268 0 0103 0239 0393 0487 0484 -0.467 0482
L 0 0.107 0 0.11 0.847 0.142 -0.039 0.221 0.029 0.222
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<Figure 3> Boxplots for angles between true and estimated directions (ratio= 7)
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<Table 2> Eigenvalues : (35, 3, 25, 2, 0.25, 0.25, 0.15,0.15, 0.1, 0.1 ) with N=600

W =0.02
Penal HARD L1 SCAD
- P st | 2nd | 3rd | 4th | Ist | 2nd | Srd | 4th | 1st | 2nd | 3rd | 4th
val,
TO 276/ 226 164 18 112 1320 09| 124 128 126 116 12
FO 0 ol 008 002 002 01 006 ol 002 002 o0 0
Mean 0199 0279| 0307 0225 0227| 0313 0282 0.183 0.249| 0300 0.240] 0.142
SD 0.146| 0.174] 0.180] 0.167| 0.240[ 0.311| 0272 0.182] 0297| 0297/ 0.049 0.041
B »=0.06
Penal. HARD L1 SCAD
Eval QMP-t 15t | 2nd | 3rd 4th Ist | 2nd | 3rd | 4th Ist 2nd | 3rd | 4th
val.
T0 536| 546| 478| 464] 312 308 276| 252| 424 44| 382] 324
FO 002| 002 108 068 024 038 o056 008 012 016 008 0
Mean 0.104| 0.099| 0.133] 0.161] 0082 0095 0152 0.139| 0148 0152] 0.113] 0.119
SD 0.115] 0.126] 0232 0205 0052 0068 0225 0220 0297 0297 0.049] 0.041
B »=0.1
Penal. HARD L1 SCAD
vl mp-4 st | 2nd 3rd 4th Ist | 2nd | 3rd | 4th | Ist 2nd 3rd | 4th
val,
TO 558| 576 494 494 532| 57 48| 482 516 55 484] 472
FO 08| 1.04 168 194 0 ol 098 028 0 ol 094 028
Mean 0203 0.208 0203 0.158| 0.101] 0088 0.145 0.175 0.112| 0.106| 0.125| 0.162
SD 0282] 0.346] 0.197] 0.003] 0038 0.023] 0205 0202| 0048 0024] 0.036] 0.023

When 7»=0.02 TO is quite far from 6 but it becomes better for larger values. Behaviors of
other statistics are very similar to those of previous case. L ; looks best in mean angles for
all values of 7 but has relatively larger variance than HARD.

Overall, it looks reasonable to use HARD for the PCA problem since it looks best in forcing
coefficients of irrelevant variables to zero and at the same time in preserving original

directions after introducing penalty functions.
5.2 Real example

Here we will look at the results of applying penalized PCA method to well-known IRIS data
set (Fisher, 1936). We combine three kinds of iris data sets into one and applied ordinary and
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penalized PCA. There are four variables, Sepal Length, Sepal Width, Petal Length, and Petal
Width. Each species have 50 observations so total of 150 cases. We look at coefficients

estimates for first two components from original and penalized PCA. We tried »={0.02, 0.1,
0.18} and only reported results for #=0.1 in the Table 3.

<Table 3> Results for IRIS data set with r=1.0

| =0.1
Penal. PCA HARD L1 SCAD
ap. Ist 2nd 1st 2nd 1st 2nd Ist 2nd

Variable

Sepal Length 0.3614 06566f 0.3665| 05860| 03513 05212 0.3433| 0.6003
Sepal Width -0.0845 0.7302 0| 07709 -0.0416] 08362|  -0.0407| 0.7745
Petal Length 08567] -01734| 08581 -02498]  0.8713| -0.1706 0.8773| -0.1992
Petal Width 03583 -00755]  0.3596 o 03402 0 0.3328 0

In the 1st component Sepal Width and Petal Width have 0 coefficient for the HARD penalty
and O for Petal Width only with other two penalty functions. HARD penalty function seems to
be the best in preserving original directions for all components. With »=0.18 (results not
included here) some coefficients tends to dominate so that coefficient estimates related to

variables with small estimates becomes smaller and resulted with 0 for Petal Length in L,

and SCAD penalty functions. We get all non-zero coefficient estimates with »={0.02 which is
very close to ordinary PCA with no penalty function.

6. Discussions

In this paper we propose a variable selection method for principal component analysis. We
incorporated penalty functions for each coefficient estimates and solve penalized optimization
problem using simulated annealing algorithm.

According to results from simulated and real data sets we found our method turned out to
be very effective in forcing coefficient estimates zero for irrelevant variables in each
component and further HARD penalty function seems to be preferable with relatively small
bias for wide range of # values than well-known SCAD and L ; penalty functions. Hence,

the proposed method can be successfully applied to high-dimensional PCA problems with
relatively large portion of irrelevant variables in the data set.

More detailed research for theoretical results regarding properties and asmptotics for
coefficient estimates and further study to find optimal values for parameters like 7 and a in
the penalty function as an example by using cross-validation (CV) or generalized CV are
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necessary.
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