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Bootstrapping Log Periodogram Regression!)
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Abstract

In this paper, we consider a modified bootstrap scheme for inference of the GPH
estimator and establish the sup—norm consistency of the proposed bootstrapping.
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1. Introduction

Time series whose autocorrelation function decays slowly to zero at a polynomial rate as
the lag increases are referred to as long memory time series. Following Brockwell and Davis
(1991), we state that a weakly stationary process has long memory if its autocorrelation

function (%) has a hyperbolic decay

o(B) ~E? ! as b — oo,
where ~ denotes that the ratio of left- and right-hand side tends to 1 and d<0.5. It is
well-known that the spectral density function, the Fourier transform of the autocorrelation
function, of long memory time series satisfies, for —0.5¢d<0.5,

AD~A " as A — 0,

where A€[ —x, n] stands for the frequency. Thus, for long memory processes, it can be

shown that golp(k)l=00 and AA) > © as A — (0 when 0{d<0.5. In practice, if the

sample autocorrelation function is not large in magnitude but decays slowly, then the time
series may have long memory.
The fractionally differenced ARIMA (p,d, @)(FARIMA (p, d, g)) model has been typically

employed to represent long memory time series. Let L be the backshift operator and let I" be

the gamma function. Then, (1— L) ¢ is the fractional differencing operator defined as
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i & Ik—dL*

and FARIMA (p, d, q) takes the form as
O(L)(1—-L)°X = &(Le,,
where €, is a white noitse with mean 0 and variance 6% The stochastic process X, is both

stationary and invertible if all roots @®(L)and @(L) lie outside the unit circle and |d]<0.5.

The process is nonstationary for d=0.5.

There are several approaches for estimating memory parameter of long memory process.
Granger and Joyeux (1980) approximated this model by a high-order autoregressive process
and estimated the differencing parameter by comparing variances for each different choice of
d. Gaussian parametric estimates for long range dependent time series models have been
rigorously justified by Fox and Taqqu (1986) and Giraitis and Surgailis (1990). However, if
the parametric model is misspecified, these estimates are inconsistent. In order to estimate
semiparametrically the parameter d Geweke and Porter-Hudak (1983) (GPH) proposed the
least square method in frequency domain based on a representation of the log periodogram
without assuming short memory structure. Under stationary Gaussian assumption, Robinson
(1995) developed asymptotic results, the consistency and the asymptotic normality, for the
modified GPH estimator which trims out low frequency periodogram ordinates, as suggested
by Kinsch (1986). Hurvich, Deo, and Brodsky (1998) extended Robinson’'s results to low
frequency ordinates. They established the asymptotic normality of GPH estimator under
Gaussian assumption in the stationary case without any modification.

We consider bootstrapping GPH estimator which can be applied to a small size of samples.
Since errors in log periodogram regression or spectral regression of long memory process are
not independent and identically distributed, see Kiinsch (1986), Hurvich and Beltrao (1993), and
Robinson (1995), the assumption for standard bootstrap in regression breaks down in the log
periodogram regression model. In this paper, we propose a modified resampling method to
overcome this difficulty. Let # be the number of observations from a stochastic model. Then,
the modified resampling method is based on drawing subsamples of size m<{#z from the
original data. Datta (1996) provided subsampling methods to obtain the bootstrap consistency
in the first-order autoregressive processes for all ranges of the autoregressive parameter. In
Section 2, we establish the asymptotic validity of the bootstrapping log periodogram regression
estimator and mathematical proofs are given in Section 3.

2. Main Results

The log periodogram regression of a stationary Gaussian long memory time series X, is

generated by the model
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(1-L)'X,=u, t=1,2,..,
and its spectral density function is

A =11— exp(—id)| ~*g(A),
where d=(—10.5,0.5) is the long memory parameter and g is the spectral density function
of u, Here, g is an even, positive, bounded, and continuous function on [ — x, #] bounded
above. The first derivative of g also is bounded away from zero with £ (0)=0 and the
second and the third derivatives are bounded in a neighborhood of zero. The parameter o
controls the long memory aspects of the process, whereas the function g determines the high
frequency properties. Note that the processes #; have been left unspecified. In fact, its
spectral density function g satisfying above conditions endows %, with a short term
correlation structure which is free from any parametrically imposed constraints.

In applications, d is generally unknown and should be estimated from a data X,,...,X ,.

Geweke and Porter-Hudak (1983) propose a semiparametric estimator, hereafter called the GPH

estimator, of d based on the first m periodogram ordinates

1 Al
ZIn’zZlX’e I '

where A,=2ns/n, s=1,...,m are fundamental frequencies, for some m<{n. Let

I 29)=

C=0.577216... be Euler’'s constant. Then, GPH estimator d is the least squares estimate of
the slope in the regression model
log(I,(A))=a—2da,+¢, (2.1)
where a= log(g(Ay)—C, a,= log|l—exp(—iA,)|, and
€= log(g(1)/g(0)) + log (1.(A)/AA D)+ C.

Here, the GPH estimators of 4 and « are given by

2 (a s_—a) log’(lx(/1 s))
a=——= 2.2)

23 (e~ 0)°

3 s n+2-2 Fa,

a=

where a is sample mean of a/'s. Although the GPH estimator is widely used in practice, its

consistency for all d=(—0.5,0.5) has not easily been established. Robinson (1995) proved
consistency and asymptotic normality for a modified estimator which regresses

log (I,(4))

infinity more slowly than m. However, simulations show that the modified estimator is

on a where [ is a lower truncation point which tends to

s=I+1" s=i+1"

typically outperformed in finite samples. Instead, we consider a modified bootstrap scheme for
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inference of the GPH estimator and investigate the sup—norm consistency of the proposed
bootstrapping.

Let e p=(m—0 ! siles be the mean of residuals {eJ, e,= log(I(d))— a+2da,

in the log periodogram regression and let ¢ %= (m—1 ~! 2+1(es—_e () % be the sample
oL

variance. Then, our bootstrap method for T,,=2‘/71( a—d)| o m(p 1S a modification of the
standard bootstrap in the classical regression model. If &, _ . are uncorrelated and

homoscedastic with zero mean, it is well known that the bootstrap approximation to the

distribution of the least squares estimates is valid, see Freedman (1981). However, Esoyqn in

the log periodogram regression do not have the former properties. The motivation for the

bootstrapping log periodogram regression is that €5, in (2.1) can indeed be replaced by

+1"

the W

Sem ™ for [/ increasing suitably with #, without affecting the limit distribution of a

under Gaussian assumptions where W, are independent random variables with

Ss=/+1"

common distribution function N(0,72/6), see Robinson (1995).
Now consider a bootstrap scheme for the system defined in (2.1). Upon observing the log

periodogram  log (1,(41)), ..., log (I .(4,)), calculate the residuals e, _ . Let e.=e,— e
denote the centered residual. Then we choose bootstrap samples &3 —1m from the empirical

distribution ', the distribution with point probability mass 1/(m—10 on their m—/

*

We may thus regard ¢,

s= 1™ oym 3 the independent and

observed values, of e,

—~

identically distributed samples from the empirical distribution of F mp, of es i - The

bootstrap sample  y7i,..,¥m can be constructed using the recursive formula
yi="2—24da,te:.

Let d° be the GPH estimators of d based on bootstrap samples,
2 (a.~ a)y:

T =—
2;‘.1(a5—_cz)2
and let
=2 =D
Om

respectively. The conditional distribution of T constitutes a bootstrap approximation of the

distribution of T, In the following theorem, we show that the conditional distribution of the
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bootstrap statistic 7', is asymptotically close to the distribution of the studentized form T,

of the least squares estimators d

0.5+4

4/5) , for

Theorem 2.1 If #n — oo, m — o, m=o(n log 2(n)=o(m), and I=m

0<8<1/2, then

sup, — () in probability.

P‘( 2/ m(d”~ Q) Sx)— o(x)

Om

Thus, the conditional distribution of ‘/—7—}1( a - d) converges weakly to normal distribution

with mean 0 and variance 72/24 in probability. [J

3. Mathematical Proofs

Lemma 3.1 If n— o, m— o, m=o(n"), log*(n)=0(m), and [=m"*"° for
0<6<0.5, then

(1) d — d in probabhility (3.1)
(2) ‘@ — a in probability (3.2)
(3) G, —n/V6 in probability.

Proof.
(1) see Hurvich, Deo, and Brodsky (1998) (HDB).
(2) We write
a=-L B rog(a+2-2 Fa,=a+ T+ Tyt T,
where

_2@d-d _ 1 __1
Ty= m glds, Tp= w2 and T3 - s=$+1€"

Then, we have

— 2
T, = \/-ly;é(g’c(?m)d) mloﬂz)ﬁ(&gﬂm)) =0p(1)0< glog\/_g’;nzz )

by theorem 2 of HDB and using the fact of Hurvich and Beltrao (1994, pp. 300-301) that

a,= log(s)+ O(%:) = O( log (m)) (3.3)

— ( in probability

uniformly in 1<s<wm. Now,
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- e

A1k Boal ) o a1mk By 509

By the proof of Lemma 1 of HDB,

where

g(0) 2 Al g (0)2r® ;152
A1=‘W+O(l) 2(0)mn? +o(1)
_ £ OrAI+ 121+ 1) _
3g(0)mn2 +0(1) 0(1).
With Jensen’ inequality and Lemma 5 of HDB,
I.(A,
P(lA,|>6) <7n1—6 glsup E( log(—7(%:)l)|

371 321 sup E(

I(/i))

2, 1/2
log( ;{A s)s ) — 0.

Finally, let U, be in equation (2.4) of Robinson (1995). Then, we have

2d log( 1= exp(=id,)l ) (3.4)
1 A
The first part of RHS (3.4) converges to 0 in probability, due to (5.14) of Robinson (1995). By
the proof of theorem 2 of HDB,
_ —iA, 2
log( 1 exg( i4,) )= O(_“:Zz ) (3.5)

uniformly in 1<s<m, so that the second part is o(1).

T13__}n +1US+ m s=i+

(3) Let e,=(m—0D ! 24‘183 and % =(m—10 ! il(es——e_,) 2 TFirstly, we show that
s= $=

6,—0,— 0 in probability and then ¢, — 7/ V6 in probability. Using lemma 2.7 of

Freedman (1981).
i(es £;)°

m—
=Ll (%—a,-23+20| ™ f =T+ Tp+T
T m ’ = 23_’_201 21 2 23s

- S0 T

2 ~ _ _ 2
—'d) s T22=”"4 (a n{?ﬁ? d) glas, and T23=4JZ¢—__dlL gldz

T21=‘;,;7‘ﬁ_l(a 5.

(Fm—ow?s—Ls 3 (e,me)i<

where
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By (32), it follows T3 = 0,(1). Due to (3.1), (32) and (3.3),

T =—4-Cpm0m (G )V - d)= 0 (1),

and
_ _O(mlog *(m)) m(d—d)* _
Tx (m—Dm log %(m) 0,(D).
We now show that ¢, — #/V 6 in probability. Write
03;:_”71_7 . Héf— ei=Tyt Ty,
where
11— exp(—iA )l \\?

T31=_———_m1—l sil(Us-i-Zdlog( . )) ,

and

(1 2d |1—exp(—iA )l \\?
TSZ—( m— 1 = +1U3+ m—1 % Hlog( A )) :

Now, T3 =B+ By+ B3, where

1 2 __4d |1—exp(—iA )l
Bi=7=7 4, Uss B2=7, 7 4 +1U$]0g( As )’
and
__4d* [1—exp(—iA Q| \\?
By=7,"7 H(log( A )) .

Since B, converges to m2/6 in probability, by (5.8) of Robinson(1995), B o is 0,(1), due to
(34) and (35), and Bj; is o(1), by (35). And T3 =o0,(1) follows by (3.4) and (35).

Therefore E;, — 7/ V6 in probability by Slutsky theorem and triangular inequality.

Proof of Theorem 2.1
Write

Sup o
m

—~

_ V?nsg;(as— e

. =x — 0(x) [Ty + T,
gl(as— a)Z Om

= sup,| P*

where
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<x|— P°*

a;— a)2 0, \/fl(as— @)% O

ﬁ‘. (a,— a)e:

TEe o

Using the fact (see Hurvich and Beltrao, 1994, pp. 301) that 21(as—_a)2=m+ o(m),

Ty=sup,|P*|— <xi|,

Vm 2 (e, e 2% (0.~ e’
2 (a

and

Tp=-sup, P’ <x|—0(x)|.

Ty =0,(1). We have for any p=2 that
$la,~d’= Zla—"d*+ 3 Ja,.~d?* (36)
s=1 s=1 s=1+/

=m "5 0( log *(m)) + O(m) = O(m),
by (A16) and (A18) of HDB. From Berry-Esseen’s inequality and (3.6),

6 2 (as“‘_d)sm—l_l 2 (e—e)?

( g‘(as__a) 2) 3/2 5};

Om) 3% (e.~e)° 3 (e~ 2)°

O(m*?) 53 (m— (m— D32 53, o).

T p<

We now show that

— Lo 3 e e =0,

Let
es=—(/&—a)—2(3—d)as+2dlog( |l—*eX1;E—z'/13)| )+ U..
Hence,
m__ll)—m . +l(es—?,)3ST51+ Ts,
where
Ts= (mcll)s/z sgﬂes, Ts= (:: ell)s/z,
and c¢; and ¢, are constants.
Tsi<D,+Dy+Ds+ Dy,

where
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el 3 c I/d d?
D1=Cu‘l\/a‘7{!‘%y D,= 12 “(m—-D $+1 ’
_cp |1~ exp(—1id))l 014 3
D3——\/—m—_l‘dlog( /15 ) » and D4— [)3/2 2 IUl

and ¢y, ¢, €13, and ¢y are constants. D=0 ,(1) follows, by Lemma 3.1. Since

s=irllasl3=0(n’zlog 3(m)) and d—d=0,(1), D, converges to 0 in probability. Dj is
o(1), by (35). And note that

K| 35, 10J]> om— )¢ 2 Eut 3 Aw)’

8(m—l)3/2 - 6(m__l)3/2 +0(1)’
where for all &>0, since Robinson (1995 pp.1069-1070) has shown that the moments of
U s/\/—r;z differ negligibly from those of the variate W,/ vV m, where the W, are iid. with zero

mean, finite variance and finite moments. Thus D;=0,(1), by the strong law of large
numbers. Finally,

Typ= (m 1)3/2 (cauE}+cnEd+cnES+cuEl),
where
N _ _'AS
E,=—-mle=a) Eg—( d) 4., Ey= d_ o0 |1—exp(—1i )I,
m— 1 m— m—1 A
and

E4_m—£7 $+1U5'

E, and E, are 0,(1), by Lemma 5.1 and E; and E, are 0,(1) by (3.4) and (3.5). Hence,
T 4 converges to 0 in probability. Thus the proof is complete. Q.E.D.
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