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Multistage Point and Confidence Interval Estimation of the
Shape Parameter of Pareto Distribution

H. 1. Hamdy1 M. S. Son? M. K. Gharraph A. M. Rashad

Abstract

This article presents the asymptotic theory of triple sampling procedure as pertain to
estimating the shape parameter of Pareto distribution. Both point and confidence
interval estimation are considered within the same inference unified framework. We
show that this group sampling technique possesses the efficiency of Anscome (1953),
Chow and Robbins (1965) purely sequential procedure as well as reduce the number of
sampling operations by utilizing Stein (1945) two stages procedure. The analysis
reveals that the technique performs excellent as far as the accuracy is concerned. The
present problem differs from those considered by many authors, in multistage sampling,
in that the final stage sample size and the parameter’s estimate become highly
correlated and therefore we adopted different approach.

Keywords. Cost of perfect information; estimation cost; foregone risk; sampling cost; triple

sampling.

1. Introduction

Pareto distribution plays an important role in so many areas of application, including
investigations of city population sizes, stock price fluctuations, insurance risk, error clustering
in communication circuits, natural resources, business failure, life testing and reliability analysis
(see for example Mann, Schaffer and Singpurawalla (1974, pp 146)). In statistical quality
control, Pareto distribution is used to study the cause and effect relation between different
types of failures and is known as Pareto chart. Pareto distributions also arise as limiting
distributions to problems involve waiting times and life testing (see for example Ahsanullah and
Houchens (1989), Ahsanullah (1991), and Balakrishnan and Ahsanullah (1994)). The model
was first introduced by Pareto (1897) to study the distribution of income. The distribution is
also related to Lorenz curve and Gini index. Bayesian statistical inference procedures for Pareto
parameters were considered by Muniruzzaman (1963), Malik (1970), Sinha and Howlader
(1980), Arnold and Press (1983), Nigm and Hamdy (1987), Arnold and Presss (1989). Liang
(1993) considered the case of estimating the scale parameter ¢, when the shape parameter €
is known under the squared error loss function using nonparametric Bayesian statistical
inference. For a detailed list of reference on parameters estimation, characterization, and
related distributions we refer to Johnson, Kotz and Balakrishnab (1994, pp 620—-627).
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To address the problem let XI’XZ""’X,, be a sequence of independent and identically

distributed random variables having the first kind Pareto distribution of the form

-1 _ -1

f(x0,0)=0670° x~% |, x26>0, 0 >0. (1.1

The scale parameter ¢ and the shape parameter @ are assumed unknown. Having recorded a
random sample of size # from the distribution in (1.1), we let

n
. S ol
X"(‘)—@';f,X"’and c,=n zl:ln(Xi/Xn(U)
I=

be the MLE’s point estimators for @ and o respectively. However, we will use the unbiased

n
version G, = (n —1)_1 Zln(X, /X"(U) to develop theory in subsequent sections.

i=1

In this study we focus on estimating the shape parameter ¢ under the following quadratic
loss function with linear sampling cost

Ly(A)=A(6,-0)* +cn (1.2)

where 4 >0 is a weight constant to be determined later in this section, and ¢ is the cost per

unit sample which assumed to be known. The first term in the right hand side of (1.2) reflects
the cost due to estimation, while the second term is known as the sampling cost. The risk

R, (A) associated with (1.2) is then obtained by taking the expectation of both sides as
E(Ly(A)) = AE(6, -0 )* +cn

R,(A)=Ac*n+cn (1.3)

Treating n in (1.3) as a continuous variable, we differentiate (1.3) with respect to » and
obtain the optimal sample size that minimizes the encountered risk as

n' =,/A/c o (1.4)

Assume further that a fixed2d, say; width confidence interval for ¢ is required such that
the coverage probability that o lies within the- interval is at least the nominal value

(o, - 0')\/;
o

100(1-a)%. Since &, is the MLE fora, it follows that £ 5 N, 1), for

sufficiently largen. Therefore under the normality assumption and the requirement
that P(|6, -0 |<d)21-a, the optimal sample size required to construct the interval should
be

nxn =(a*/d*) o’ (1.5)
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where a is the upper 100(1 -« /2)% cutoff point of the standard normal distribution. The

quantity (a®/d?) appears in the right hand side of (1.5) is Fisher’s optimal information,
which represents the amount of information required to explore a unit variance in order to
construct a 2d fixed width confidence interval foro with at least 100(1-—a)% . Hence,

comparing n" in (1.4) and (1.5) we have, 4 =(a®>/d*) cn’ which refers to the cost of perfect

information. While cn’ refers to the optimal cost of sampling. By the cost of perfect information
we mean, the amount of information required to explore a unite variance in order to attain the
optimal risk.

Since & in (1.4) is unknown #" is also unknown. On facing the ignorance of ¢ in (1.4), we

resort to the following three—stage method of sampling to estimate ¢ via estimation of n'. The
existing literatures in multistage sampling (purely sequential, two stage, three—stage and
accelerated sequential schemes) are limited and focused primarily on estimating the shape
parameter @ (see for example Wang (1973), Mukhopadhyay and Eko (1985), and Hamdy and
Pallotta (1987) for details). However, we are not aware of any publications in multistage
inference about o . The reason behind such limitation is rather technical.

In section 2 we describe the triple sampling procedure and its asymptotic characteristics
along the lines of Hall (1981), Mukhopadhyay (1985), Mukhopadhyay et al. (1987), Hamdy and
Pallotta (1987), Hamdy (1988), Hamdy et al. (1988) and Hamdy et al. (1989). We also stress
that the techniques adopted by the above authors are different from those presented in this
paper, for the dependency between the three—stage stopping rule and the estimate of o
becomes troublesome. Therefore the analysis is different from those authors listed above.
Nevertheless, the decision frame in the present work is similar to Almahmeed et. al. (2002).

2. Triple Sémpling Estimation Procedure for o

Sequential sampling in three—stages was first introduced in the seminal work of Hall (1981)
to construct fixed width confidence interval for the normal mean with a predetermined
confidence coefficient 100(1 — )% . His procedure is designed to combine the efficiency of the
purely sequential procedures and the operational savings made possible by sampling in batches.
The originality of his procedure and the elegance of the sampling technique are astonishing.

As the name might suggest, the three—stage estimation procedure takes three sampling
phases to finish the whole estimation process namely, the pilot study phase, the main study
phase and the fine tuning phase. The pilot study phase, starts by taking an initial pilot sample of
size m 22, say, from the distribution in (1.1) to initiate an estimate for the unknown parameter

o. Denote these potential observations by Xl,Xz,...,Xm. Then we compute

m

6, = len(Xi /Xm(l)), where Xm(l) = {gé};lnXi. In the main study phase, we estimate, only, a
i=

fraction ¥ & (0,1) of n". Then we mimic the form of n" given in (1.4) and define the following

second stage sample size as
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N :max{m,[yaz o"’z’/dzJH} @.1)

where [x] is the largest integer less than or equal to x. If m > [y a’ 6? /d2]+1, we stop at
m

this stage. Otherwise, we continue to observe an additional sample of size N1 —m from the

distribution in (1.1) and update the estimate of o based on the augmented Ny observations. We
then, define the final stage sample size as

N =maxi N, , a26'2 /d2 +1 2.2)
1 Nl

We terminate the whole sampling process at this stage, if N; >l:a26']2v /d2]+1. Differently,
1

we proceed to record N—N1 extra samples to be augmented with the previously selected N,
samples. Upon terminating the sampling procedure we construct the confidence interval
(6 —d,Gy +d) and propose Gy as the point estimate for the unknown shape parameter o
to minimize the anticipated risk. It is clear from the final stage, rule in (2.2), that the final
sample size N and &N are highly correlated and therefore the analysis takes somewhat

different turn. The following Lemma 1 gives preliminary results concerning the three—stage
procedure (1.2)—(2.2). ‘

Lemma 1 In the context of the three—stages rule (2.1)—(2.2) we have asd — 0,
()E(Gy )=o-d’(ya’ )™ +o(d’)
y N 2 -1 2
(ll)Var(O'Nl)—O'd (ya“) +o(d”)
(iii)E| Gy, —oP=0(d?).
n 1 2 - . . .
(iv)E h(ay,) = h(o) +—2-d 2a?y +o(d?), for some continuously differentiable bounded
function h(-).
(Var(h(cy,)) = y'd*a? +o(d?).
The following transformation enables one to replace the random variables Ny and N by other
random variables M1 and M respectively, which are defined similarly but in terms of the

sample mean of iid. random variables. Let U; =In(X;) for i=1,2,3,... It follows that the

random variables Ul, Uz’Us"" are iid. random variables with the following probability density

function
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k(u;In(0),0)=c"te (4 MON/ o 1B), o0 (2.3)
It follows that

G, = ;(n—i+1)(U(,.) ~U,q))/(n=1), n=23,..

Where U(i) is the i order statistic from (2.3) and U(O) = 0. Finally, we implement the

following common transformation technique Z; =(n—i+1)(U;) =U/y)). It follows that the

random variables Zi are iid. with the following probability density function

k(z;0) = o lem?/o 4 0, o>0.

n-1
Hence, we write 6, as Zn =ZZi /(n-1), n=2,3,...

i=l
It follows from Lemma (6.1) of Lombarod and Swanepoel (1977) (see also Swanepoel and
Van Wyke (1982)) that decision rules based on the sequences {62, n> 2} and {ZZ, n> 2} are
n n
equivalent. Consequently, we define

M, = max{m , yaz —sz /d2}+1} (2.4
M =max{M1 , a2—Z—12M /d2]+1} (2.5)
i 1

It follows that the random variables N; and M) as well as N and M are identically

distributed. Therefore, we continue to use the stopping rules (2.4)—(2.5) instead of (2.1)—
(2.3) to develop our subsequent results.

Proof of Lemma 1  To prove (i), we write E(&N1)=E(§M1). Then conditioning on the

o — fleld generated by the random variables Z;,Z,,...,Z,, ; to have
E(ZM,))=EE(ZM)|Z,srZ,, )

-1 Myl

1 m-1 M-
= E{(Ml -DTE(Z 2+ X Z,-)IZp---=Zm4)}
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m-1
Given Z,Z5,....,Z,,_1, the first sum Zzi is non—random, hence,

i=1
B2y )=E{(M1 )57 +orm —m))}

=o+E\(m=1) (M~ (Zn o))

_— * . .
Expanding (M -1) 1 around ym using Taylor series,

(M=) =(yn" ) =( M=y’ )(ym’ )2+ (M —yn” )23

(2.6)

2.7

where ¢ appears in (2.7) is a random variable lies between }/n‘ and M]. For large d, we

approximate

Ml z}’azd_zfm

(2.8)

To see that, we write M, =[7a2d_22m] +1, a.s. as d =0 except possibly on some set

§=(;/a2d_22m$m), of measure zero, where h=h(d)=2m(m—l)d2/}/a2. Clearly as

d—0, g—>0.Hence,
P(ra*a=z, Sm)=P(2(m ~1)Z,, /o<h)

2
=P(23 ) <M

_t
M=2¢ 24t/T(n-1)

< (M= 2a/T(m)

O3 O —

=n"1/v(m)
=0(1)
Thus, we have

M, =([ya2d‘22m] +1)I(7a2d'27m >m)+ml(ya’d>Z, <m)

where I(-) is the set indicator function. Therefore, we write

M, =(;/a2d_2fm +1-(ya*d?Z _[},azd-zzn] )I(}/azd‘zfm >m)+ml(ya’d>Z, <m)
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Let M, be the continuous version of M,, ie. M, = max(m,(yazd-zzm » then we write
M =ya*d?Z I(ya*d>Z, >m)+ml(ya*d?>Z, <m)

It follows that
M,-M,.=BI(ya*d>*Z,>m)

where ﬂ=1-—(}/a2dh22m -—l}/azd_zzm J) is uniformly distributed over (0,1 ) (see for
example Hall (1981), for details).

Now,
E(M,-M,.)=E{BI(ya*dZ, >m)|
<(8(8?) B 1ly a*aZ, > m)F
1

=(E(ﬂ2)P2 (7a2d'22m >m))5 :

= (1)2 =0.58
3

where we have used Cauchy—Schwartz inequality.
As indicated, even for moderate values of d, the expected difference between M| and M. is

less than 0.58 of an observation. It follows that

(M=) =y " )y d X Zm-c )y ) 4 (ya? PN Zm-0)76 .

Thus, (2.6) yields

E(E M, )=a+E{(m—1 )(Zm—0) {(yn* ) —ya*d X (Zm-c)(yn’ )2 +(ya) d 2(Zm -0 )24-3}]

—o+(m=1)(yn" ) VE(Zm-0)=ya(yn' ) Hm-VE(Zm -0 )*
Hm=1)(ya) B{(Zm-0)3¢3)
—o—(ya? ) d? +(m=1)(ya* Pd~* E{(Zm -0 )?¢ )

It remains to evaluate the remainder term as follows. We consider two cases:

1. If n') <S¢ < (M -1,
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then have
(m=1)(ya®)*d™ *E{(Zm -0 )3¢ "}
<(m=-1)(ya®)*d *E (Zm -0 )3 (yatd=2 )3 =o(a?)

2. If (M=) <(yn’), we write

(m=1)ya®)?d™* E{Zm - o)} ¢ 3} m-1)ya®)2d* E{Zm — ) (M, 1)}

2.9)
m=1)2(ya>)2d" *E{Zm - )} }=0(d?)

Finally, we get
E(6y )=o-d*(ya®) +o(d?);
1

which proves part (i/)of Lemma 1. Parts (if) and (iii) can be established in a similar manner.
Taylor expansion, parts (i), (if), and (iii) prove part (iv) of Lemma 1. Part (v) is direct
application of part (iv), thus we omit any further details for brevity.

It is clear from (i) of Lemma 1 that &NI is under estimating ¢, the amount of bias depends

on the constants a@ and y. It is interesting to see any reduction for bias due to the information

gained by the third stage. We will elaborate on such improvement, as we develop results
concerning the third stage.

The next Theorem provides asymptotic moments of the final stage sample size N .
Theorem 1. In the context of the rule (2.1)—(2.2), we have, as d — 0,
(i)E(N)=n" =y 1412+ 0(1)

(ii )Var(N)=n"y "V +0(d™?)
GE|N—n" P=o(d™?).
Proof of Theorem 1. Following Hall (1981), we write,
N=[a’6y /d*]+1
~a’6y 1d? + @,

where,
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@, =1-(a*d" 262y, -[a? 6'2N1 1d%1)
is asymptotically uniform over (0,1) as d -0 (see Hall (1981, pp 1237) for details). It
follows that

E(N)=a*d~ 2E(6'N1 JH12+0(1).
We then apply (iv) of Lemma 1 to obtain (i)of Theorem 1. To prove (ii), we consider

Var(N):Var(azar*1’-a‘N1 +®,)

=Var(a’d™26 y ) +Var(®,)+2a°d" *Cov(S y D ;)

Using Cauchy—Schwartz inequality, we get
2
- N _2
< =
{Cov(o‘N1 ,(Dd)} < Var(aNl) Var(®,)=o0(d™ %), as d - 0.

which shows that the two random variables &Nl and @, are asymptotically uncorrelated.

Therefore,
Var(N)=a*d™* Var(6 y )+o(d™?).

Next, we use (i) and (ii) of Lemma 1 to obtain part (i) of Theorem 1. Part (iii) of Theorem 1
can be established from (iii) of Lemma 1, which completes the proof of Theorem 1.

It would be of interest for further analysis in subsequent section to find second order
approximation to a continuous differentiable function of N in the following Theorem 2.

Theorem 2. In view of the rule (2.1)—(2.2), let g be continuously differentiable function in a

*
neighborhood around n such that

Sup|g"'(n)|=0 (1g""(n")1),
nzm
then,

E(g(N))=g(r W)\ (r=2)g(n )+n g'(n) |+o(g(d™?)),as d—0

* .
Proof of Theorem 2. We expand g(N) around n in Taylor series and take the expectation
throughout to obtain
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E(g(N))=g(n" )JWE(N —n" )g'(n" )+ 12E(N -n" )*g"(n" )+ 16E{(N -n" P3g""(v )}

- - - * . . -
where v is a random variable lies between N and »n and primes mean derivatives. We then
apply parts (i) and (#7) of Theorem 1 and write

E(g(N)=g(n' J+(2y) "y ~2)g'(n" Jj4n" g"(n" )+ 12 E{(N -n" PP g""(v).

It remains to evaluate the remainder term. Using part (iii) of Theorem 1, it follows that,
L2EYN - n*)3g"’(V)}sl/2§g5lg"’(n)lEIN-n* P=00g""(n")lo(d™ )=o(lg'(d™*))).
Lemma 2. In view of the three—stage rule (2.1)—(2.2) we have as d = 0,

()E@G y) =0 -a"2d? +o(d?)

(ii)E(Gy —0)* =n" +32+2y 1 +o(1).

The proof of Lemma 2 is direct application of Lemma 3 of Almahmeed et. al. (1998, pp 547),
thus we omit details. It follows from (i) of Theorem 1 that the third stage indeed reduced the

bias noticed in (7)of Lemma 1 above.

The main result of this study is given in the following theorems. To study the asymptotic
foregone risk of the triple sampling procedure (2.1)—(2.2), as in Chow and Robbins (1965), we
define the asymptotic foregone risk of the triple sampling procedure as

0= E(LN(A))—E(L’,* (4))
Theorem 3. Under the quadratic loss function (1.2), the foregone risk of the procedure (2.1) —
(2.2) is given by @ = 2+;V_1 +o(1) as d-»0.

Proof of Theorem 3. We first write the foregone risk of the triple sampling procedure as
2 4-2 A 2 *
w=a°d E(O‘N—O') + E(N)-2n

Hence, we use (ii) of Theorem 2 and (i) of Theorem 1 to affirm the statement of Theorem 3.
[t is clear from Theorem 3, that the cost of using the triple sampling procedure (2.1)—(2.2)
instead of the fixed sample size procedure is equivalent to 2+y -1 1t is also of interest to affirm
that the coverage probability that ¢ lies within the fixed with confidence interval is at least the
nominal value as indicated by the following Theorem.
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Theorem 4. The asymptotic coverage probability of the confidence interval foro that is
associated with triple sampling procedure (2.1)~(2.2) is given by

P{|6'N —0'|Sd}=(1——a)—a ¢(a)(a2 —-2;/+5)(2}/n°)‘l +o(d*) asd—0
where @(-) Is the standardized normal p.d.f.

Proof of theorem 4: The coverage probability of the triple sampling confidence interval for &

can be written as P{‘ZN—O"Sd}=iP{|ZN—o"Sd|N=n}P(N=n). Anscombe (1952)

n=m

central limit theorem also provides

[—Z”—""jﬁ—f» N(0,1) as d >0
g

it follows that

= d\VN
P{z, -o|<d}=E| 20 dIN)_,
o
where ®@(-) is the standardized cumulative distribution function of the normal distribution. Now,
apply theorem 2 above, then the statement of theorem 4 is immediate.

The quantity (a2 -2y +5 )/(2 ¥ ) appears in the statement of theorem 4 is known as the cost
of not knowing o (the cost of ignorance).

Since the results given in section 2 in this paper are asymptotic in nature, it is vital to assess
the small to moderate sample size performance of the above procedure in real life applications.

3. Moderate Sample Size Performance

A series of 5000 Monte—Carlo simulations were generated to present a sense regarding the ,
small to moderate sample size behavior of the integrated three—stage sampling scheme (2.1)—
(2.2). As has been mentioned in Section 1, the procedure provides a fixed width confidence
interval for o with at least 100(1 — )% confidence coefficient and at the same time provides a
point estimate for & under squared error loss function with linear sampling cost. In the
simulations, we allowed the optimal sample size to vary from small #n® =(5,10,20,25,30,50,
75,100,150,200,500,1000) to large. We fixed @=1 and o =1 in all simulations. The design
factor ¥ assumed values 0.3,0.5, 0.7, and 0.8 to study the effect of changing this factor on the
final stage sample size. The starting sample size m took values 5,10,15 and 20 to study the
effect of changing the initial sample size on the quality of the three—stage estimates. The
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confidence coefficient was permitted to have the nominal values 0.90, 0.95 and 0.99. The

following tables present the simulation results for selected combinations of y,m,a , and n .

In each case, we start the procedure by generating m samples from Pareto distribution with
@ =1 and o =1. Hence, estimates for o (G, ) and 8 (X,,,, ) are computed to initiate the
three stage rule in (2.1) ~(2.2). Of course, these estimates are updated during the course of
estimation. Upon observing N(XN(U) and O at the final stage we store these values for

further use. The process is repeated 5000 times. Finally estimates N of n', &, of o, @ for

@,and p for (1—a ) are computed based on 5000 simulations.

Close investigation to the simulation results presented in Tables 1—5 illustrates several facts
regarding the performance of the triple sampling procedure (2.1)—(2.2). Generally speaking, it
is noticed that in all tables the triple sampling estimates of o is very close from the targeted

value 1. Its standard error decreases with the increase of »' . Also, the targeted coverage
probability attains the nominal value. Two important remarks regarding the role played by the
size of the pilot sample m and the design factor y. We have notice that if the starting sample

size happens to be chosen smaller than the optimal, this will lead to a substantial over sampling

(compare N and n') presented in the tables. The amount of bias decreases as n’ shifts away
from the value of m . A slight savings in the triple sampling sample size is notice for larger

values of n' . The simulations also reveals that if ¥ is less than 0.5 a substantial over sampling
occurs especially with smaller values of n . But if ¥ is greater than 0.5 a substantial over

sampling occurs with larger values of n . Therefore, to avoid the problem of under or over

sampling, one should guess a value of m not very much smaller nor very much larger than n
"compare the amount of bias in tables 2 and 4". Many authors including Hall (1981), Hamdy
(1988), Hamdy et al. (1988), Hamdy et al. (1989), and Hamdy and Pallotta (1987) argued that
the choice of m to be 5, 10, 15, or 20 is reasonable for practical implementation. These

findings support the assumption that Sup%<}/ set forward by Hall (1981). The choice of

design factor y to be 0.5 is reasonable for practical use “compare ‘N—n*( in table 2 and 5". It

is worth mentioning that the asymptotic foregone risk is always negative, which illustrates that
the triple sampling procedure performs better than the fixed sample size procedure has ¢ been
known. This could be due to the dependence between the three—stage sample size N and the

parameter estimate &N .
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Table (1)
m=5, y=03, a=0.05

' N SE®N) 6, SE@6,) & P }JV -n'
5 725 0.050 1.0047 03367  -2.75 09978  2.25
10 10.90 0.089 0.9983 0.3247  —-9.10 0.9480  0.90

15 14.57 0.128 1.0034 0.3188 —-1543 0.8812 0.43
20 18.26 0.166 1.0016 0.2973 —-21.74 0.8364 1.74
25 22.10 0.203 0.9954 0.2782 —-27.90 0.8460 2.90
30 26.56 0.239 0.9993 0.2678 —-33.44 0.8420 3.44
50 43.34 0.361 0.9971 0.2266 —56.66 0.8348 6.76
75 66.51 0.505 1.0004 0.1909 —-83.49 0.8464 8.49
100 92.44 0629 1.0027 0.1576 -107.56 0.8876 7.56
200 189.76 0.996 0.9999 0.1022 -210.24 0.8992 10.24
500 493.04 1.822 0.9999 0.0550 -506.96 0.9364 6.96
1000 1000.92 2.886 0.9999 0.0341 -999.08 0.9404 0.92

Table (2)
m=10, y=0.5, «=0.05

" N SE(N) 6, SE(,) o P |N-n
5 10.33 0.018 0.9921 0.2830 0.33 0.9982 5.33
10 12.76 0.059 1.0012 0.2503 -7.24 0.9912 2.76

15 1598 0.093 0.9981 0.2505 -14.02 0.9620 0.98
20 19.93 0.129 1.0054 0.2450 —-20.07 0.9316 0.07
25 23.96 0.160 1.0002 0.2278 -26.04 0.9024 1.04
30 28.20 0.194 0.9990 0.2259 -31.80 0.8720 1.80
50 46.97 0.301 1.0003 0.1871 -53.03 0.8814 3.03
75 70.86 0.398 0.9974 0.1527 -79.14 0.8912 4.14
100 96.28 0.483 0.9967 0.1278 -103.71 0.9020 3.72
150 147.85 0.657 1.0006 0.0991 -152.16 0.9192 2.15
200 199.66 0.756 1.0017 0.0800 -—200.34 0.9320 0.34
500 507.41 1.559 0.9997 0.0462 —492.59 0.9418 7.41
1000 1028.43 2.703 1.0001 0.0328 —971.57 0.9426 28.41
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Table (3)
m=15, y=0.5, a=0.05

n' N SEN) &, SE@G,) & P |1V - n*\
5 15.03 0.005 0.9995 0.2568 503 0.9996  10.03
10 15.98 0.038 1.0065 0.2221 —4.02 0.9986 5.98

15 18.52 0.076 1.0002 0.2121 —-11.47 0.9868 3.52
20 21.73 0.105 0.9952 0.2069 —-18.27 0.9682 1.73
25 25.63 0.136 0.9987 0.2073 —24.38 0.9476 0.63
30 29.53 0.164 1.0009 0.2022 -30.47 0.9232 0.47
50 47.30 0.263 1.0037 0.1722 -52.70 0.8994 2.70
75 71.00 0.359 1.0009 0.1449 =79.00 0.9008 4.00
100 95.67 0.440 1.0021 0.1234 -104.33 0.9068 4.43
150 145.51 0.558 0.9989 0.0955 -154.49 0.9180 4.49
200 197.05 0.654 1.0016 0.0776 -—-202.95 0.9302 2.95
500 502.77 1.177 1.0007 0.0459 -497.23 0.9412 2.77
1000 1006.64 1.765 0.9998 0.0321 —993.36 0.9458 6.64

Table (4)
m=20, y=05, a=0.05

n' N SEMN) &6, SEG,) o P ‘ N- n*[
5 2000 0.002 09984 0.2225 10.00 0.9984 15.00
10 20.18 0016 0.9963 0.2126 0.19 0.9990 10.18
15 21.46 0.052 0.9985 0.1954 —8.54 0.9928 6.48
20 2415 0089 1.0007 0.1884  -15.85 0.9830 4.15
95 2746 0.119 0.9985 0.1856  —22.54 0.9666 2.46
30 31.22 0147 0.9975 0.1857  -28.78 0.9524 1.22
50 47.33  0.239 0.9966 0.1638  —52.67 0.9034 2.67
75 70.81 0.340 0.9975 0.1327 -79.19 0.9154 4.19
100 96.05 0.418 1.0020 0.1183 —103.95 0.9146 3.95
150 145.27 0.536 1.0002 0.0927 —154.73 0.9230 4.73

200 195.57 0.635 1.0015 0.0790 —-204.43 0.9268 4.43
500 497.89 1.056 1.0000 0.0457 —-502.11 0.9452 2.11
1000  999.40 1.563 0.9995 0.0319 -1000.59 0.9488 0.60
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Table (5)
m=10, y=0.7, «=0.05

n' N SE(N) 6, SEG,) @ p {JV - n"|
5 1037 0019 1.0053 0.2906 0.37 09982 537
10 12.45 0.056 0.9993 0.2490 -7.55 0.9930 2.45

15 16.17 0.101 1.0021 0.2445 -13.83 0.9672 1.17
20 20.49 0.142 1.0027 0.2409 -19.51 0.9352 0.49
25 2556 0.183 0.9998 0.2298 -24.44 0.9014 0.56
30 30.67 0.216 1.0041 0.2205 —-29.33 0.8816 0.67
50 51.22 0.333 0.9992 0.1847 —48.78 0.8844 1.22
75 78.45 0.452 1.0000 0.1504 -71.55 0.9014 3.49
100 105.94 0.604 0.9989 0.1241 —94.06 0.9154 5.94
150 161.22 0.807 0.9991 0.0917 -138.78 0.9288 11.22
200 218.76 1.062 1.0003 0.0748 -—181.24 0.9408 18.76
500 550.84 2.300 1.0005 0.0443 —449.16 0.9486 50.84
1000 1108.65 4.710 0.9989 0.0308 —891.35 0.9490 108.65
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