DOI QR코드

DOI QR Code

Optimization of the Extrusion Processing Conditions of Soymilk Residue and Corn Grits Mixture

두유박과 옥분 혼합물 압출성형 제조공정의 최적화

  • 한규홍 (경희대학교 생명과학부 식품공학과) ;
  • 김병용 (경희대학교 생명과학부 식품공학과)
  • Published : 2003.12.01

Abstract

The extrusion conditions of the soymilk residue and corn grits mixtures were optimized. The experiment was designed according to the D-optimal design of response surface methodology (RSM), which shows 18 experimental points including 4 replicates for three independent variables (screw speed, water content and die temperature). The responses variables such as bending force, expansion ratio, bulk density, water solubility index (WSI), water absorption index (WAI), and color values (L*, a*, b*) were evaluated using response surface analysis. Expansion ratio and WSI decreased with increasing water content, whereas bulk density tended to increase with increasing water content. While greater screw speeds enhanced WSI and yellowness, higher moisture contents decreased the expansion ratio and WSI value. However, die temperature did not influence upon the response variables. The optimum extrusion conditions by numerical and graphical methods were similar: the screw speed, water content, and die temperature were 250 rpm, 22.43% and l28.16$^{\circ}C$ by the numerical method; 250 rpm, 22.43%, and 128.02$^{\circ}C$ by graphical method.

두유박과 옥분 혼합물의 압출성형물을 제조하기 위한 공정 조건의 위하여 스크류 속도 150∼250 rpm, 혼합물의 수분함량 20∼30%, 온도 100∼15$0^{\circ}C$의 조건에서 압출 성형하고, 반응표면분석법 (RSM)을 이용하여 최적 조건을 분석하였다. 공정 조건에 따른 팽화율에서는 스크류 속도가 높고 수분함량이 낮을수록 팽화가 크게 일어났고, 수분함량이 많을수록 용적 밀도를 높이는 것으로 나타났다. 절단강도의 경우 수분 함량에 따라 감소하다 증가하는 추세를 보여주었고, WSI는 스크류 속도와 수분함량에 WAI는 수분함량과 온도에 많은 영향을 받았다. 색도에서는 b* 값을 제외하고는 유의적인 차이를 보이지 않았다. 각 조건별 실험결과를 반응표면분석을 한 결과 팽화율과 용적 밀도, WSI, b* 값은 linear모델로 결정되었고, 절단강도와 WAI는 quadratic 모델이 유의성을 나타내었다. 압출 성형 공정의 최적화는 결정된 반응식과 반응표면 그래프를 이용한 결과 수치 최적화에서는 스크류 속도 250 rpm, 수분함량 22.43%, 온도 128.16$^{\circ}C$이었고, 모형적 최적화에서는 desirability가 0.727인 스크류 속도 250 rpm, 수분함량 22.43%, 온도 128.02$^{\circ}C$로 결정되었다.

Keywords

References

  1. Genta HD, Genta ML, Alvarez NV, Santana MS. 2002. Production and acceptance of a soy candy. J Food Eng 53: 199-202. https://doi.org/10.1016/S0260-8774(01)00157-1
  2. Ma CY, Liu WS, Kwok KC, Kwok F. 1997. Isolation and characterization of proteins from soymilk residue (okara). Food Res Int 29: 799-805.
  3. Chan WM, Ma CY. 1999. Acid modification of proteins from soymilk residue (okara). Food Res Int 32: 119-127. https://doi.org/10.1016/S0963-9969(99)00064-2
  4. Cheung PCK. 1995. Biological conversion of soybean waste to edible mushroom mycelium by submerged fermentation. In Proceedings of the Fourth Pacific Rim Biotechnology Conference. Sydney, Australia. p 96-97.
  5. Kim ZU, Bang CS, Choi JB, Lim CS. 1989. Utilization of soymilk residue for wheat doenjang. J Korean Soc Agric Chem Biotechnol 32: 357-361.
  6. Kim ZU, Park WP. 1990. Making of extruded noodles mixed with soymilk residue. J Korean Soc Agric Chem Biotechnol 33: 216-222.
  7. Hong JS, Kim MK, Yoon S, Ryu NS. 1993. Preparation of dietary fiber sources using apple pomace and soymilk residue. J Korean Soc Agric Chem Biotechnol 36: 73-79.
  8. Ohno A, Ano T, Shoda M. 1993. Production of the antifungal peptide antibiotic, iturin by Bacillus subtilis NB22 in solidstate fermentation. J Ferment Bioeng 75: 23-27. https://doi.org/10.1016/0922-338X(93)90172-5
  9. Matz SA. 1993. Snack Food Technology. 3rd ed. Van Nortrand Reinhold, New York, USA.
  10. Suknark K, Phillips RD, Chinnan MS. 1997. Physical properties of directly expanded extrudates formulated from partially defatted peanut flour and different types of starch. Food Res Int 30: 575-583. https://doi.org/10.1016/S0963-9969(98)00016-7
  11. Shin HH, Park BS, Lee HL, Choi MJ, Hwang JK. 1991. Analysis of whole grains extrusion by response surface methodology. Korean J Food Sci Technol 33: 686-692.
  12. Alavi SH, Gogoi BK, Khan M, Bowman BJ, Rizvi SSH. 1999. Structural properties of protein-stabilized starch-based supercritical fluid extrudates. Food Res Int 32: 107-118. https://doi.org/10.1016/S0963-9969(99)00063-0
  13. Park KH. 1976. Elucidation of the extrusion puffing process. PhD Dissertation. University of Illinois.
  14. Anderson RA. 1982. Water absorption and solubility and amylograph charact-eristics of roll-cooked grain products. Cereal Chem 59: 265-269.
  15. Myers RH, Montgomery DC. 1995. Response Surface Methodology: Process and product optimization using designed experiments. John Wiley & Sons, New York. p 364-370.
  16. Derringer G, Suich R. 1980. Simultaneous optimization of several response variables. J Quality Technol 12: 214-219.
  17. Chinnaswamy R, Hanna MA. 1988. Optimum extrusioncooking conditions for maximum expansion of corn starch. J Food Sci 53: 1464-1469. https://doi.org/10.1111/j.1365-2621.1988.tb09300.x
  18. Alvares-Martinez L, Kondury KP, Harper JM. 1988. A general model for expansion of extruded products. J Food Sci 53: 609-615. https://doi.org/10.1111/j.1365-2621.1988.tb07768.x
  19. Aguilera JM, Kosikowski FV. 1976. Soybean extruded product: a response surface analysis. J Food Sci 41: 647-651. https://doi.org/10.1111/j.1365-2621.1976.tb00691.x
  20. Case SE, Hanna MA, Schwartz SJ. 1992. Effect of starch gelatinization on physical properties of extruded wheat-and corn-based products. Cereal Chem 65: 138-143.
  21. Guha M, Ali SZ, Bhattacharya S. 2003. Screening of variables for extrusion of rice flour employing a Plackett-Burman design. J Food Eng 57: 135-144. https://doi.org/10.1016/S0260-8774(02)00282-0
  22. Chaez-Jaregui RN, Silva MEMP, Ares JAG. 2000. Extrusion cooking process for amaranth (Amaranthus caudatus L.). J Food Sci 65: 1009-1015. https://doi.org/10.1111/j.1365-2621.2000.tb09408.x
  23. Pelembe LAM, Erasmus C, Taylor JRN. 2002. Development of a protein-rich composite sorghum-cowpea instant porridge by extrusion cooking process. Lebensm Wiss Technol 35: 120-127. https://doi.org/10.1006/fstl.2001.0812
  24. Gujska E, Khan K. 1990. Effect of temperature on properties of extrudates from high starch fractions of navy, pinto and garbanzo beans. J Food Sci 55: 466-469. https://doi.org/10.1111/j.1365-2621.1990.tb06788.x

Cited by

  1. 초고압 균질공정 요인에 따른 대두박(비지)의 가공적성 연구 및 식이섬유 강화식빵의 최적화 vol.18, pp.2, 2014, https://doi.org/10.13050/foodengprog.2014.18.2.95
  2. Development of Herbal Chicken Porridge and the Establishment of Optimizing the Mixing Ratio vol.26, pp.1, 2013, https://doi.org/10.9799/ksfan.2013.26.1.022
  3. Physicochemical Properties of Rice-based Expanded Snacks according to Extrusion Conditions vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1407
  4. Antimicrobial Effect of ε-Poly-L-lysine Mixture on cheonggukjang and Optimization of the Mixing Ratio vol.18, pp.4, 2014, https://doi.org/10.13050/foodengprog.2014.18.4.276