DOI QR코드

DOI QR Code

Synthesis of Nanostructured Si Coatings by Hybrid Plasma-Particle Accelerating Impact Deposition (HP-PAID) and their Characterization

하이브리드 플라즈마 입자가속 충격퇴적(Hybrid Plasma - Particle Accelerating Impact Deposition, HP-PAID) 프로세스에 의한 Si 나노구조 코팅층의 제조 및 특성평가

  • 이형직 (강릉대학교 세라믹공학과) ;
  • 권혁병 (강릉대학교 세라믹공학과) ;
  • 정해경 (강릉대학교 세라믹공학과) ;
  • 장성식 (강릉대학교 세라믹공학과) ;
  • 윤상옥 (강릉대학교 세라믹공학과) ;
  • 이형복 (명지대학교 세라믹공학과) ;
  • 이홍림 (연세대학교 세라믹공학과)
  • Published : 2003.12.01

Abstract

Using a recently developed Hybric Plasma-Particle Accelerating Impact Deposition (HP-PAID) process, synthesis of nanostructured silicon coatings has been investigated by injecting vapor-phase TEOS (tetraethosysilane, (C$_2$H$\_$5/O)$_4$Si) into an Ar hybrid plasma. The plasma jet with reactants was expanded through nozzle into a deposition chamber, with the pressure dropping from 700 to 10 torr. Ultrafine particles accelerated in the free jet downstream of the nozzle, deposited by an inertial impaction onto a temperature controlled substrate. By using this process, nanostructured amorphous silicon coatings with grain size smaller than 10 nm could be synthesized. These samples were annealed in an Ar and crystallized at 900$^{\circ}C$ for 30 min. TEM analysis showed that the annealed coatings were also composed of nanoparticles smaller than 10 nm, which showed a good consistency that the average grain size of 7 nm was also estimated from a peak shift of 2.39 cm$\^$-1/ and Full Width at Half Maximum (FWHM) 5.92 cm$\^$-1/ of Raman analysis. The noteworthy is that a strong PL peak at 398 nm was also obtained for this sample, which indicates that the deposited coatings also contained 3∼4 nm nanostructured grains.

최근 개발된 하이브리드플라즈마 가속입자충격 프로세스를 이용하여 기상의 TEOS(tetraethoxysilane, (C$_2$ $H_{5}$O)$_4$Si)를 Ar-hybrid plasma 환경 하에 분사하는 방법으로 나노구조(nanostructured) Si 코팅 합성에 대해서 연구하였다. 반응가스와 함께 플라즈마제트는 노즐을 통해서 챔버속으로 700 torr정도에서 10 torr정도로 압력 강하를 동반하며 확장되었다. 노즐의 초중단부에서 핵생성 및 입성장한 초미세입자는 노즐의 하단의 자유 제트에서 가속되어 온도조절 기판위에 관성 충격에 의해 퇴적되어 10nm 이하의 비정질 실리콘 코팅층이 형성되었다. 퇴적된 비정질 코팅은 Ar분위기의 tube로에서 열처리 되었는데 90$0^{\circ}C$에서 30분간 열처리하여 결정화가 시작되었고, 이때 시편의 입자크기는 TEM을 통하여 10nm 이하로 유지됨을 알 수 있었다. 또한 라만분광기로 분석한 결과 이동치는 2.39$cm^{-1}$ /이며 반감폭은 5.92$cm^{-1}$ /으로 피크 이동치로 도출한 평균입자크기 7nm값과 일치하였으며, 특히 PL 피크는 398nm에서 강한 피크를 나타내어 3∼4 nm의 극미세 나노입자도 포함하고 있음을 알 수 있었다.

Keywords

References

  1. Prog. Mater. Sci. v.33 Nanocrystalline Materials H.Gleiter https://doi.org/10.1016/0079-6425(89)90001-7
  2. Annu. Rev. Mater. Sci. v.21 Cluster-assembled Nanophase Materials R.W.Siegel https://doi.org/10.1146/annurev.ms.21.080191.003015
  3. Nano Struct. Mater. v.3 Nanostructured Materials -mind Over Matter- R.W.Siegel https://doi.org/10.1016/0965-9773(93)90058-J
  4. Ceramics v.7 no.1 Synthesis Process of Ultrafine Nanocomposite Powders H.J.Lee;H.S.Lee;H.B.Lee;H.L.Lee
  5. Thermal Spray, Thermal Spraying of Nanostructured Coatings by Hypersonic Plasma Particle Deposition J.Heberlein;N.P.RaO;A.Neuman;T.Blum;N.Tymiak;P.H.McMurry;S.L.Girshick
  6. Nanostruct. Mater. v.9 Nanostructured Materials Produced by Hypersonic Plasma Particle Deposition N.P.Rao;H.J.Lee;M.Kelkar;D.J.Hansen;J.V.R.Heberlein;P.H.Mcmurry;S.L.Girshick https://doi.org/10.1016/S0965-9773(97)00035-4
  7. J. Aerosol v.29 no.5;6 Hypersonic Plasma Particle Deposition of Nanostructured Silicon and Silicon Carbide N.P.Rao;N.Tymiak;J.Blum;A.Neuman;H.J.Lee;S.L.Girshick;P.H.McMurry;J.Heberlein https://doi.org/10.1016/S0021-8502(97)10015-5
  8. J. Appl. Phys. v.54 no.2 Characterization of a Hybrid Plasma and its Application to Chemical Synthesis T.Yoshida;T.Tani;H.Nishimura;K.Akashi https://doi.org/10.1063/1.332070
  9. J. Jpn. Inst. Met. v.53 no.12 Process Control for the Formation of Fine SiC in a Thermal Plasma Flame K.Eguch;I.Y.Ko;T.Suguwara;H.J.Lee;T.Yoshida
  10. J. Am. Ceram. Soc. v.73 no.11 Preparation of Ultrafine Si₃N₄and Si₃N₄+SiC Mixed Powders in a Hybrid Plasma H.J.Lee;K.Eguch;T.Yoshida https://doi.org/10.1111/j.1151-2916.1990.tb06461.x
  11. The Kor. J. of Ceram. v.2 no.3 Comparison of Blue Luminescence Between Spark-processed Photoluminescing Silicon and Ambient Air Aged Anodically Etched Porous Silicon S.S.Chang;S.O.Yoon
  12. The Kor. J. of Ceram. v.4 no.1 The Blue and Red Luminescences from Ambient Air Aged Porous Silicon S.S.Chang;S.O.Yoon;G.J.Choi;Y.Kawaksmi;A.Sakai
  13. J. Kor. Ceram. Soc. v.40 no.8 Thermal Annealing Effect on the Machining Damage for the Single Crystalline Silicon S.H.Jeung;S.M.Jeong;H.S.Oh;H.L.Lee https://doi.org/10.4191/KCERS.2003.40.8.770
  14. Appl. Phys. Lett. v.60 no.17 Raman Analysis of Light-emitting Porous Silicon Z.Sui;P.P.Leong;I.P.Herman;G.S.Higashi;H.Temkin https://doi.org/10.1063/1.107097
  15. Mater. Sci. Eng. v.B64 Luminescence Properties of Ambient Air Aged and Thermally Oxidized Porous Silicon S.S.Chang;A.Sakai;R.E.Hummel
  16. Mater. Sci. & Eng. v.B95 Raman and Electron Paramagnetic Resonance Studies of Spark-processed Si and Ge S.S.Chang;G.A.Bowmaker