DOI QR코드

DOI QR Code

Fabrication of Porous Ceramics for Microorganism Carrier by Hydrothermal Reaction

수열반응을 이용한 미생물 담체용 다공성 세라믹스의 제조

  • 양성구 (경남대학교 공동기기센터(대학원 재료공학과)) ;
  • 정승화 (경남대학교 재료공학과) ;
  • 강종봉 (경남대학교 신소재공학부)
  • Published : 2003.12.01

Abstract

Porous ceramics for microoganism carriers were prepared with amorphous alumina and pore formers by hydrothermal reaction, burn-out and wash-out method. Activated carbon with average size of 67,222, and 405 $\mu\textrm{m}$, organic polymer and inorganic salt were used as pore formers. Specimens were hydrothermally treated at 200$^{\circ}C$ for 24 h, heat-treated at 650$^{\circ}C$ for 5 h, and washed out at 80$^{\circ}C$ for 48 h. The formation of crystalline phase, porosity, pore size distribution and compressive strength were measured. The specimen with activated carbon was transformed to boehmite phase, but organic polymer and inorganic salt inhibited the aquohydroxoy complex gel and crystalline formation. The porous ceramics for microoganism carriers using activated carbon as a pore formers was successfully prepared, which is composed of ${\gamma}$-alumina phase with porosity of above 70 vol% and the compressive strength of 40 kgf/$\textrm{cm}^2$.

비정질알루미나에 기공형성제를 첨가하여 성형하고 수열반응, 열처리 및 수세를 통해 pellet 형태의 다공성 세라믹 담체를 제조하였다. 기공형성제는 64, 222, 405 $\mu\textrm{m}$의 평균 입경을 가지는 활성탄, 폴리머와 무기염의 변화를 두었으며, 20$0^{\circ}C$에서 24시간동안 수열반응 한 다음 $650^{\circ}C$에서 5시간동안 열처리 및 8$0^{\circ}C$에서 48시간 동안 수세하고, 결정의 생성 및 변화, 기공률, 기공의 분포 및 압축 강도를 측정하였다. 수열반응 이후 활성탄이 첨가된 시편은 boehmite로의 상전이가 이루어졌으나, 기공형성제로 폴리머 및 무기염이 첨가된 시편은 수열 반응 시 비정질알루미나의 aquohydroxy complex gel의 형성을 방해하여 boehmite 결정성장 억제를 가져왔다 활성탄을 기공형성제로 첨가하여 제조한 시편의 경우, 70% 이상의 기공률과 40kgf/$\textrm{cm}^2$ 이상의 강도를 갖는 ${\gamma}$-알루미나의 담체를 제조할 수 있었다.

Keywords

References

  1. Wastewater Microbiology G.Bitton
  2. Wat. Sci. Tech. v.21 An Anaerobic Fixed Bed Reactor with Porous Ceramic Carrier M.Kawas;T.Nomrua;T.Majima
  3. Can. J. Chem. Eng. v.64 Continuous Production of Penicillin-G by Penicillium Chrysogenum Cells Immobilized on Celite Biocatalyst Support Particles A.Johns;D.N.Wood;T.Eazniewska;G.M.Gaucher https://doi.org/10.1002/cjce.5450640404
  4. Wat. Sci. Tech. v.22 no.1;2 Wastewater Treatment by Attached-growth Microorganism on a Geotextile Support G.Valentis;J.Lesavre
  5. Wat. Sci. Tech. v.22 no.1;2 Open-pore Sintered Glass as a High-efficiency Support Medium in Bioreactors; New Results and Long-term Experiments Achieved in High-rate Anaerobic Digestion K.Breitenbucher;M.Siegl;A.Knupfer;M.Radke
  6. Wat. Res. v.24 no.2 Biotechnological Sulphide Removal in Three Polyurethane Carrier Reactors; Stirred Reactor, Bioreactor Reactor and Upflow Reactor C.J.Buisman;B.Wit;G.Lettinga https://doi.org/10.1016/0043-1354(90)90110-R
  7. Ceramics Raw Materials(in Kor.) J.K.Lee;J.O.Kim;Y.H.Beak;J.S.Lee;B.H.Lee;D.W.Shin
  8. Ceram. Trans. v.31 Preparation of Porous Materials by Sol-gel Method S.Sakka
  9. Ceram. Trans. v.30 Production of Porous Alumina by Hot Isostatic Press A.Kazjkevics
  10. J. Ceram. Soc. Jpn. v.101 no.8 Slip Casting of Alumina Using Porous Alumina Mould Y.Kondo https://doi.org/10.2109/jcersj.101.928
  11. Ind. End. Chem. Res. v.28 Granulation and Rehydration of Rehydratable Aluminas Powders C.C.Huang;H.O.Kono https://doi.org/10.1021/ie00091a005
  12. J. Kor. Ceram. Soc. v.39 no.10 Fabrication of Double-layered Porous Materials J.Y.Yun;H.K.Kim;C.H.Park https://doi.org/10.4191/KCERS.2002.39.10.919
  13. J. Kor. Ceram. Soc. v.39 no.3 Preparation of High-capacity Ceramic Catalytic Support from Gibbsite B.K.Park;J.K.Suh;J.M.Lee;D.S.Suhr https://doi.org/10.4191/KCERS.2002.39.3.245