DOI QR코드

DOI QR Code

다경간 콘크리트 교량의 지진 취약도

Seismic Fragility Curves for Multi-Span Concrete Bridges


초록

다수의 지점 위에 놓인 교량의 경우, 지진으로 인한 지반운동은 교량길이에 따른 거리에 걸쳐 지점마다 현저하게 다를 수 있다. 본 연구는 이러한 공간적 특성을 고려하기 위하여 지점마다 다른 진폭과 위상 그리고 주파수 성분을 갖도록 지반운동 시간이력곡선을 생성하였고, Monte Carlo 해석기법을 사용하여 생성된 지반운동 하에서 교량의 비선형 동적거동을 고찰하였으며 두개의 실제 교량에 대한 취약도 해석을 수행하였다. 공간적 특성이 지진반응에 미치는 영향을 고려하여 교량교각의 연성도에 대한 취약도 곡선을 개발하였고, 동일지진 하에서의 취약도 곡선과 비교 검토하였다. 본 연구는 동일 지반운동을 사용하여 교량해석을 수행하는 경우 교각의 요구 연성계수가 상이 지반운동을 사용하는 경우보다 저평가 될 수 있다는 것을 입증하였다. 지진취약도 곡선은 지반운동의 강도를 표시하는 PGA, PGV, SA, SV와 SI의 함수로 나타내어졌다. 본 연구는 최초로 공간적 특성을 반영한 지반운동 하에서의 지진취약도 곡선을 개발하였으며, 다경간 교량의 내진설계시 시방서에 그 영향을 고려하기 위한 설계지침의 근거를 제공할 것이다.

Seismic ground motion can vary significantly over distances comparable to the length of a majority of highway bridges on multiple supports. This paper presents results of fragility analysis of two actual highway bridges under ground motion with spatial variation. Ground motion time histories are artificially generated with different amplitudes, phases, as well as frequency contents at different support locations. Monte Carlo simulation is performed to study dynamic responses of the bridges under these ground motions. The effect of spatial variation on the seismic response is systematically examined and the resulting fragility curves are compared with those under identical support ground motion. This study shows that ductility demands for the bridge columns can be underestimated if the bridge is analyzed using identical support ground motions rather than differential support ground motions. Fragility curves are developed as functions of different measures of ground motion intensity including peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(SA), spectral velocity(SV) and spectral intensity(SI). This study represents a first attempt to develop fragility curves under spatially varying ground motion and provides information useful for improvement of the current seismic design codes so as to account for the effects of spatial variation in the seismic design of long-span bridges.

키워드

참고문헌

  1. Basoz, N., and Kiremidjian, A. S., “Evaluation of bridge damage data from the Loma Prieta and Northridge, California earthquake,” Technical Report MCEER-98-0004, 1998.
  2. Hwang, H., Jernigan, J. B., and Lin, Y. W., “Expected seismic damage to Memphis highway systems,” Proceeding of 5th U.S. Conference on Lifeline Earthquake Engineering, 1999.
  3. Shinozuka, M., Feng, M. Q., Kim, H.-K., Uzawa, T., and Ueda, T., “Statistical analysis of fragility curves,” Technical Report MCEER, 2000a.
  4. Shinozuka, M., Uzawa, T., and Sheng, L.-H., “Estimation and testing of fragility parameters,” International Conference on Monte Carlo Simulation, 2000b.
  5. Shinozuka, M., Feng, M. Q., Lee, J., and Nagaruma, T., “Statistical analysis of fragility curves,” J. Engrg. Mech. ASCE, Vol. 126, No. 12, 2000c, pp. 1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  6. Shinozuka, M., Feng, M. Q., Kim, H.-K., and Kim, S.-H., “Nonlinear static procedure for fragility curve development,” J. Engrg. Mech. ASCE, Vol. 126, No. 12, 2000d, pp. 1287-1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
  7. Buckle, I. G.(Editor), “The Northridge, California Earthquake of January 17, 1994: Performance of Highway Bridge,” Technical Report NCEER-94-0008, National Center for Earthquake Engineering Research, State University of New York, Buffalo, 1994.
  8. Shinozuka, M., Deodatis, G., Saxena, V., Kim, H.-K., “Effect of spatial variation of ground motion on bridge response,” Technical Report MCEER, 1998.
  9. Deodatis, G., Simulation of stochastic processes and fields to model loading and material uncertainties: Probabilistic methods for structural design, Kluwer Academic Publshers, 1996a.
  10. Deodatis, G., “Simulation of ergodic multi-variate stochastic processes,” J. Engrg. Mech., ASCE, Vol. 122, No. 8, 1996b, pp. 778-787. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778)
  11. Deodatis, G., “Non-stationary stochastic vector processes: Seismic ground motion applications,” Probabilistic Engrg. Mech., Vol. 11, No. 3, 1996c, pp. 149-167. https://doi.org/10.1016/0266-8920(96)00007-0
  12. Kim, S.-H. and Shinozuka, M., “Effects of seismically inducd pounding at expansion joints of concrete bridges,” J. Engrg. Mech. ASCE, Vol. 129, No. 11, 2003.
  13. California Department of Transportation, COLx Users Manual, Sacramento, CA, 1993.
  14. Computer and Structures, Inc., SAP2000/Nonlinear Users Manual, Berkeley, CA, 1999.
  15. Hausner, G. W., “Intensity of ground motion during strong earthquakes,” Proceedings of 1952 Symposium on Earthquake and Blast Effects on Structures, Earthquake Engineering Research Institute, California Institute of Technology, 1952.