@i AFE RS G

2003-8-4-1 6
W8 WA, 2003 12 2003-8-4- 1

A Study On Relationships between
Election Problems of Coordinator
Under Distributed Systems

Yoon Kim*

o of
B ad 870, EA e TRt e ALES FAsta Bs] HalMe B oY
Z2A2E 7RH 23 A coordinator) A2l A&E 9 5H3 Z2AAE FoB) oE 2
A ZAAE B4 Eltl(leader) St ¥-29 BUE A& AT dunelde AF9Ue A4
< 7= ol 3539l $88 847t "l o] =894 593)| failure detector(FD)E 3T ¥
57] A28 876N AE A 2 AANA B4 2o JBRAE B9 AVlEE BAE dEast
g} AR, Alxg] 2dE Fostn 1 e 2y AES AUE ¥ opXger 34 TREFS o
£31a] Mg TAZE A2 A HE] BE R o {E FHATE & Aol

Abstract

In this paper, I raise an issue regarding the relationships between the Election problem
and the Consensus problem in asynchronous systems with unreliable failure detectors.
First, I describe our system model, and then define Leader Election. After then, I show
that the Election problem is harder to resolve than the Consensus problem. Each correct
process eventually gets into the state in which it considers only one process to be a
leader. Therefore a Perfect Failure Detector is the weakest failure detector which is
sufficient to solve the Election. In order to show that the Election problem is harder to
resolve than the Consensus problem, I utilize the Reduction protocol in this paper.

» Keyword : Election Problem, Consensus Problem, Coordinator

AT AEEANE JERB

36 Sl A e HEE mEE(2003. 12)

I

To elect a Leader(or Coordinator) in a distributed
system, an agreement problem must be solved
among a set of participating processes.

This called the

requires the participants to agree on only one

problem, Election problem,
leader in the systems. The Election problem is
described as follows. At any time, there is at most
one process that considers itself a leader and all
other processes consider it as to be their only
leader. If there is no leader, a leader eventually
get elected.

Consensus and Election are similar problems in
which they are both agreement problems. The
so-called FLP impossibility result, which states
that it is
agreement in an asynchronous system even with a

impossible to solve any non-trivial

single crash failure, applies to both problems (1}.

The starting point of this paper is the

fundamental result of Chandra and Toueg(2],
which states that Consensus is solvable in
asynchronous systems with unreliable failure
detectors.

An interesting question is then whether the
Election problem can also be solved in
asynchronous systems with unreliable failure

detectors. The answer to this question is 'No’, and
this is not surprising because the Election problem
has been considered harder than Consensus (3].
However, in contrast to initial intuition, the reason
why Election is harder than Consensus is not its
difficulty in
Election is actually its Safety condition(all the

Liveness condition. The solving
nodes connected the system never disagree on the
leader when the nodes are in a state of normal

operation). This condition requires precise knowledge

about failures which unreliable failure detectors
cannot provide.

The rest of the paper is organized as follows. In
Section 2, 1 describe our system model. In Section
3. I define Leader Election and show that it is
harder than Consensus. Finally, Section 4 summarizes
the main contributions of this paper and discusses
related and future work.

1. Model and Definitions

Our model of asynchronous computation with
failure detection is the one described in (4]). In the
following, 1 only recall some informal definitions
and results that are needed in this paper.

1. Processes

I consider a distributed system composed of a
finite set of processes 9={pl,pZ..,pn} completely
connected through a set of channels.

Communication is by message passing, asynchronous
and reliable. Processes fail by crashing: Byzantine
failures are not considered.

Asynchrony means that there is no bound on
communication delays or process relative speeds. A
reliable channel ensures that a message, sent by a
process pi to a process pj, is eventually received by
pj if pi and pj are correct (i.e. do not crash).

To simplify the presentation of the model, it is
convenient to assume the existence of a discrete
global clock. This
inaccessible to processes. The range of clock ticks

is merely a fictional device

A history of a
process pi€¥ is a sequence of events hi = e’ - ef’ -

oif oo e, where eik denotes an events of process

is the set of natural numbers.

pi occurred at time k. Histories of correct processes
are infinite.

EAA 28 B3 24 dE FAE Tl a7 37

If not
terminates with the event crashik (process pi

infinite, the process history of pi
crashes at time k). Processes can fail at any time,
and I use f to denote the number of processes that
may crash. I consider systems where at least one
process correct (i.e £ {|2]). A failure detector is a
distributed oracle which gives hints on failed
processes.

I consider algorithms that use failure detectors.
An algorithm defines a set of runs, and a run of
algorithm A using a failure detector D is a tuple R
=(F, H I S T):Iis an initial configuration of
A: S is an infinite sequence of events of A {made
of process histories) : T is a list of increasing time
values indicating when each event in S occurred: F
is failure pattern that denotes the set F(t) of
processes that have crashed at any time t; H is a
failure detector history, which gives each process p
and at any time ¢, a (possibly false) view H(p,t) of
the failure pattern: H(p,t)
processes, and qE€H(p,t) means that process p

denotes a set of

suspects process q at time t.

2. Failure detector classes

Failure detectors are abstractly characterized by
completeness and accuracy properties(4).

Completeness characterizes the degree to which
crashed processes are permanently suspected by
correct processes. Accuracy restricts the false
suspicions that a process can make.

Two completeness properties have been identified.
Strong Completeness, i.e. there is a time after
which every process that crashes is permanently
and Weak

there is a time after which

suspected by every correct process,
Completeness, 1i.e.
every process that crashes is permanently suspected
by some correct process.

Four accuracy properties have been identified.
Strong Accuracy, i.e. no process is never suspected
before it crashes. Weak Accuracy. i.e. some correct
process is never suspected. Eventual Strong Accuracy
i.e. there is a time after which correct processes

are not suspected by any correct process: and
Eventual Weak Accuracy, i.e. there is a time after
which some correct process is never suspected by
any correct process. A failure detector class is a
set of failure detectors characterized by the same
completeness and the same accuracy properties
(Fig. 1).

For example, the failure detector class P, called
Perfect Failure Detector, is the set of failure
detectors characterized by Strong Completeness and
Strong Accuracy. Failure detectors characterized by
Strong Accuracy are reliable! no false suspicions
are made. Otherwise, they are unreliable.
called

are unreliable, whereas

For example, failure detectors of S,
Strong Failure Detector,

the failure detectors of P are reliable.

Completeness Aeclrscy
e Strong Weak | CStrong | Weak
Strong P S <P <8
Weak Q w cQ W

Fig. 1 Failure detector classes

3. Reducibility and transformation

An algorithm A solves a problem B if every run
of A satisfies the specification of B. A problem B is
said to be solvable with a class C if there is an
algorithm which solves B using any failure detector
of C. A problem B is said to be reducible to a
problem Bz with class C, if any algorithm that
solves Be with C can be transformed to solve B
with C. If B is not reducible to Bs, I say that B;
is harder than B:.

A failure detector class Cp is said to be stronger
than a class Cz (written C; (Cp), if there is an
algorithm which, using any failure detector of Ci,
can emulate a failure detector of Co. Hence if C; is
stronger than C? and a problem B is solvable with
Co, then B is solvable with C;. The following
relations are obvious: P(g, P(S, OP ($Q, OP(CS,
S(W, OS(OW, @ W, and CQ(OW. As it has been
shown that any failure

detector with weak

38 i A FEHERRE #aE(2003. 120)

Completeness can be transformed into a failure
detector with Strong Completeness (4], 1 also have
the following relations: @ (P, OQ(OP, W(S and O
W(COS. Classes S and OP are incomparable.

4. Consensus

In the Consensus problem(or simply Consensus),
every participant proposes an input value, and
correct participant must eventually decide on some
common output value(5]). Consensus is specified by
the following conditions. Agreement: no two correct
participants decide different values: Uniform-
Validity: if a participant decides v, then v must
have been proposed by some participant; Termination:
every correct participant eventually decide. Chandra
and Toueg have stated that Consensus is solvable
with OP or S(4).

lil. Election is harder than consensus

In this section, I show that the Election problem
in asynchronous systems with
This
result holds even with the assumption that at most

is not solvable
unreliable failure detectors. impossibility
one process may crash. Hence Election is harder
than Consensus.

1. The Election Problem

The proof of the impossibility of Consensus in(1)
assumes that it is impossible for a process to
determine whether another process has crashed, or
is just very slow. This assumption is widely cited
as the ‘reason’ for the impossibility result. There
are other problems which cannot be solved in
asynchronous systems with crash failures for the
same intuitive reason that Consensus cannot be
solved. Some of these problems can be solved with

a weak failure detector: however, some cannot. In
particular, the Election problem cannot be solved if
a crashed process cannot be distinguished from a
slow process.

The
following two properties.

Election Problem is specified by the
Safety: All

connected the system never disagree on a leader

processes

when the nodes are in a state of normal operation.
Liveness: All processes should eventually progress
to be in a state in which all processes connected to
the system agree to the only one leader. An
election protocol is a protocol that generates runs
that satisfies the Election specification.

2. Impossibility of solving Election Problem
Though P or S are sufficient to solve Consensus,
it is not sufficient to solve Election. Therefore the
than the
Consensus problem since even when assuming a

Election problem 1is strictly harder
single crash, unreliable failure detectors are not
strong enough to solve election. In this section, I
show that Strong Accuracy is necessary for solving
Election, and it is sufficient for solving Election.

Theorem 1 If) 0, Election can not be solved
with either OP or S.

proof. Consider a failure detector D of OP. 1
assume for a contradiction that there exists a
deterministic election protocol £ that can be
combined with a failure detector D such that E +
D is also an election protocol. Consider an
algorithm A combined with E+ D which solves
Election and a run R=<(F, HD, I, S, T) of A.

1 assume that only two processes Pi and Fj are
correct and all messages from them is delayed
until after ¢ in A.

Consider that Pi is a leader at time (R, k). At
time (R, ki) where (k+¢t)) ki) k. the process P
falsely suspects other process Pi in some run. At
time (R, k2) where kz)k; P considers itself a
leader by delaying the receipt of all messages sent
by P until ks, where (k+t)) ks) k1.

WA 2o

M

A7 242 A& FAE Qo FaaA A7

Thus in (R, ks) both P, and B consider themselves
the leader, violating the assumption that A is an
election protocol.

But after a time £, all the processes except F;
and P are suspected. Hence there is a time after
which every process that crashes is permanently
suspected by every correct process. So Hp satisfies
Strong Completeness. Consider Accuracy. After a
time t, Pi and Pj are never suspected in HD.
Hence HD satisfies Eventual Strong Accuracy. This
is a contradiction.[]

Theorem 2 A weakest failure detector to solve
Election is the Perfect Failure Detector.

Proof: 1t is shown in (3) that a failure detector
satisfying Strong Accuracy and Strong Completeness
can be used to implement a Perfect Failure
Detector. Strong Accuracy has processes never
suspect a correct process: suspicions are never
false. Every correct process always detects a leader
failure only when the leader crashes using a
Perfect Failure Detector. After an election is
started, the problem of electing only one process as
a leader is a kind of consensus problem: hence this
problem is easily solved with a Strong Failure
Detector which is less strong than Perfect Failure
detectors. That means that every correct process
eventually gets into the state in which it considers
only one process to be a leader. Therefore a
Perfect Failure Detector is the weakest failure

detector that is sufficient to solve Election.[]

. Concluding Remarks

The importance of this work is in extending the
applicability field of the results of Chandra and

Toueg(4) on solving problems in asynchronous

system (with crash failures and reliable channels}
augmented with unreliable failure detectors. The
applicability of these results to problems other
than Consensus has been discussed in(2,5,6.7.8).

To our knowledge, it is, however, the first time
that Election problems are discussed in asynchronous
systems with unreliable failure detectors.

I am not the first one to show that there are
problems harder than Consensus. The first such
result that I am aware of is(9) in which the
authors show that Non-Blocking Atomic Commitment
(NB-AC) cannot be implemented with the weakest
failure detector that can implement Consensus.
This problem arises when transactions update data
in a distributed system and the termination of
transactions should be coordinated among all
participants if data consistency is to be preserved
even in the presence of failures (10).

It resembles the Election problem in that NB-AC
is harder than Consensus, but it does show that a
failure detector weaker than a Perfect Failure
Detector is strong enough to solve the problem.
NB-AC appears to be than
Consensus and easier than Election.

Hence, harder

I believe that there are problems harder than
Election as well. One can define failure detectors
that are stronger than a Perfect Failure Detector.
For example, [can define a failure detector that is
not only perfect but also guarantees that a failure
of a process is detected only after all messages
that
detecting process. This failure detector is required

it has sent have been received by the

by some problems,
version of the
problem (10].

including the non-blocking

asynchronous Primary-Backup

40

g 2 FHHREE A as(2003. 12)

(1)

(2]

(3)

(4]

(5

(6)

(7

(8]

Workshop on Distributed Algorithms, 1994.

(9) Rachid Guerraoui. Revisiting the relationship
betlen non-blocking atomic commitment and
consensus. In Proceedings of the 10th International

References Workshop on Distributed Algorithms, Springer

Verlag (LNCS 857), 1996.
(10) P.A.Bernstein, V. Hadzilacos, and N. Goodman.

M. Fischer, N. Lynch, and M. Paterson. Concurrency Control and Recovery in Database
Impossibility of Distributed Consensus with Systems. Addison Isley, 1987.
One Faulty Process. Journal of the ACM,
pages 374-382. (32) 1985.
T. Chandra and S.Toueg. Unreliable failure
detectors for reliable distributed systems.
Technical Report, Department of computer
Science, Cornell Univ., 1994.
D. Doleb and R Strong. A Simple Model For
Agreement in Distributed Systems. In
Fault-Tolerant Distributed computing, pages
42-59. B. Simons and A. Spector ed. Springer
Verlag (LNCS 448, 1987.
T. Chandra, V. Hadzilacos and S. Toueg. The
lakest Failure Detector for Solving Consensus.
Proceedings of the 11th ACM Symposium on
Principles of Distributed Computing, pages
147-158. ACM press, 1992.
R. Guerraoui and A. Schiper. Transaction
model vs Virtual Synchrony model: bridging
the gap. In Distributed Systems: From Theory
to Practice, pages 121-132. K. Birman, F.
Mattern and A. Schiper ed, Springer Verlag
(LNCS 938), 1995.
V. Hadzilacos. On the relationship betlen the
atomic commitment and consensus problems. In ,
Fault-Tolerant Distributed Computing, pages b o I‘[‘ bty |
201-208. B. Simons and A. spector ed,
Springer Verlag (LNCS 448), 1987.
L. Sabel and K. Marzullo. Election vs. Consensus
in Asynchronous Systems. Technical Report

2 e
1982 FRkgln -suE B.E.
1988 ©PlI= Stevens Institute of

Technology M.S.
TR95-1488, cornell Univ, 1995. s 2000 IEidEta BFEE
A. Schiper and A. Sandoz. Primary Partition PhD. $2
Virtually-Synchronous CommunicationO harder Az STADERGE AEuok

than consensus. In Proceedings of the 8th 3} @

