A CFD Prediction of a Micro Critical Nozzle

마이크로 임계노즐 유동의 CFD 예측

  • 김재형 (안동대학교 기계공학과 대학원) ;
  • 김희동 (안동대학교 기계공학부) ;
  • 박경암 (한국표준과학연구원 유체유동그룹)
  • Published : 2003.06.01

Abstract

Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $\kappa$-$\varepsilon$turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

본 연구에서는 마이크로 임계노즐을 통한 유출계수를 예측하기 위하여, 축대칭, 압축성 Navier-Stokes 방정식을 사용한 수치계산을 수행하였다. 수치해의 적합성을 조사하기 위하여, 다양한 난류모델과 벽함수를 적용하였으며, 수치 결과들은 종래의 실험결과와 비교하였다. 그 결과 본 수치계산법은 임계노즐을 통한 유출계수를 적절하게 예측하였으며, 특히 표준 $\kappa$-$\varepsilon$난류모델과 표준 벽함수를 적용한 경우에 유출계수를 가장 잘 예측함을 알았다. 본 연구의 결과로부터 얻어진 임계노즐벽면의 난류경계층의 배제두께는 레이놀즈수가 2000에서 20000의 범위에서 임계노즐목 직경의 약 2%에서 0.6%까지 변화하였으며, 종래의 경험식과 잘 일치하였다.

Keywords

References

  1. Kim, H. D., Kim, T. H. and Woo, S. H., 1999, 'Further Consideration on Internal Gas Flow Choke,' 대한기계학회 춘계발표논문집(B), pp. 379-384
  2. Hillbrath, H. E., 1981, 'The Critical Flow Ventury an Update, Flow: Its Measurement and Control in Science and Industry,' Instrument Society of America, Vol. 2, pp.407-420
  3. ISO 9300, 1990, Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles
  4. Nakao, S., Irayama, T. and Takamoto, M., 2000, 'Relations between the Discharge Coefficients of the Sonic Venturi Nozzle and a Kind of Gases,' JSME, Series B, Vol. 66, No. 642, pp. 438-444 https://doi.org/10.1299/kikaib.66.438
  5. Bernstein, A., Heiser, W. H. and Hevenor, C., 1967, 'Compound Compressible Nozzle Flow,' Trans. ASME., Jour. Applied Mechanics, Vol. 37, pp. 548-554
  6. Tang, S. P. and Fenn, J. B., 1978, 'Experimental Determination of the Discharge Coefficients for Critical Flow through anAxisymmetric Nozzle,' AIAA, Vol. 16, No.1, pp. 41-46 https://doi.org/10.2514/3.60854
  7. Geropp, D., 1971, 'Laminare Grenzchichten in Ebenen und Rotation Ssymmetrischen Lavalduesen,' Deutsche Luft-und Raumfahrt for Schungsbericht, pp. 41-46
  8. Hall, I. M., 1962, 'Transonic Flow in Two-Dimensional and Axially-Symmetric Nozzles,' Quarterly Journal of Mechanics and Applied Mathematics, Vol. 15, No. 4, pp. 487-508 https://doi.org/10.1093/qjmam/15.4.487
  9. Ishibashi, M. and Takamoto, M., 2000, 'Theoretical Discharge Coefficient of a Critical Circular-Arc Nozzle with Laminar Boundary Layer and Its Verification by Measurements using Super-Accurate Nozzles,' Flow Measurement and Instrumentation, Vol. 11, pp. 305-313 https://doi.org/10.1016/S0955-5986(00)00029-7
  10. Choi, Y. M., Park, K. A., Cha, T. S., Choi, H. M. and Yoon, B. H., 2000, 'Evaluation of Critical Pressure Ratios of Sonic Nozzles at Low Reynolds Numbers,' KSME, Series B, Vol. 24, No. 11, pp. 1535-1539