전착법으로 제조한 나노결정질 저Ni 퍼멀로이의 미세 조직과 자기적 특성

Microstructure and Mgnetic Properties of Electrodeposited Nanocrystalline Low-Nickel Permalloy

  • 허영두 (한국생산기술연구원, 나노표면기술팀) ;
  • 이흥렬 (한국생산기술연구원, 나노표면기술팀) ;
  • 황태진 (한국생산기술연구원, 나노표면기술팀) ;
  • 임태홍 (한국생산기술연구원, 나노표면기술팀)
  • 발행 : 2003.12.01

초록

Microstructural and magnetic properties of nanocrystalline Fe-46 wt%Ni and Fe-36 wt%Ni alloys were investigated. Alloys were prepared by the electrodeposition process. The electrolytes were iron sulfate/nickel chloride-based and iron chloride/nickel sulfamate-based solutions. Fe-46 wt%Ni alloy was FCC structure with grain size of 10 nm, but FCC and BCC phases were found in Fe-36 wt%Ni alloy and its grain size was smaller. Effective permeability of Fe-36 wt%Ni alloy was higher than that of Fe-46 wt%Ni alloy in the high frequency range because of large electrical resistivity and small eddy current loss resulted from grain size decrease. Up to $300^{\circ}C$ of annealing temperature, grain growth of Fe-Ni alloys slowly occured. Conversely, annealing above $450^{\circ}C$ led to a drastic grain growth. In that case, effective permeability was decreased at the temperature lower than $300^{\circ}C$ but at $300^{\circ}C$ or higher effective permeability was increased. At the high frequency of 1 MHz, electrodeposited Fe-Ni alloys had higher effective permeability with an decrease in the grain size.

키워드

참고문헌

  1. Metals Handbook, 10th ed., ASM, 2 (1990) 770.
  2. 임태홍, 이흥렬, 고주파용 Fe-Ni계 박판 자심재 제조 기술 개발, 산업자원부 연구보고서 (2000).
  3. A. Robertson, U. Erb, G. Palumbo, Nanostruc.Mater., 12 (1999) 1035. https://doi.org/10.1016/S0965-9773(99)00294-9
  4. Elzbieta Jartych, Jan K. Zurawicz, Dariusz Oleszak,Marek Pekata, J. Magn. Magn. Mater., 208 (2000)221. https://doi.org/10.1016/S0304-8853(99)00543-0
  5. F. Czerwinski, H. Li, M. Megret, J. A. Szpunar,Scr. Metall, 37 (1997) 1967.
  6. C. Cheung, F. Djuanda, U. Erb, G. Palumbo Nanostruct. Mater., 5 (1995) 513 https://doi.org/10.1016/0965-9773(95)00264-F
  7. Hongqi Li, Fereshteh Ebrahimi, Mater. Sci. Eng.,A347 (2003) 93.
  8. T. Osaka, M. Takai, Y. Sogawa, T. Momma, K.Ohashi, M. Saito, K. Yamada, J. Electrochem. Soc.,146 (1999) 2092. https://doi.org/10.1149/1.1391896
  9. G. Herzer, IEEE Trans. Magn., 25 (1989) 3327. https://doi.org/10.1109/20.42292
  10. B. D. Cullity, Introduction to Magnetic Materials,Addison-Wesley Pub. Co., Massachusetts, (1972) 291
  11. R. M. Bozorth, Ferromagnetism, D. Van Nostrand Co. Inc., Princeton, New Jersey (1963) 104, 111,571.
  12. X. Y. Qin, J. G. Kim, J. S. Lee, Nanostruc. Mater.,11 (1999) 259. https://doi.org/10.1016/S0965-9773(99)00040-9
  13. R. Alben, J. J. Becker, M. C. Chi, J. Appl. Phys.,49 (1978) 1653. https://doi.org/10.1063/1.324881
  14. G. Herzer, Mater. Sci. Eng., A133 (1991)
  15. B. D. Cullity, Elements of X-Ray Diffraction,Addison-Wesley Pub. Co., Massachusetts, (1978) 127