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Analysis of Ultrasonic Linear Motor Using the Finite Element
Method and Equivalent Circuit

Jong-Seok Rho*, Hyun-Woo Joo*, Chang-Hwan Lee** and Hyun-Kyo Jung*

Abstract - In this paper, a three-dimensional finite element method and construction of equivalent-
circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element
routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer.
Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor
are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic
motor is shown for determination of contact points. By using the finite element method and analytic
equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and
efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit
parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element

method and analytic equations.
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1. Introduction

(ltrasonic motors have received much attention in
response to the need for high-torque density, low-speed at
higl efficiency and small weight for small power
app ‘ications.

i1 addition to rotary USM, the linear USM is also the
sub ect of extensive interest, having a great deal of
freedom in design, high-thrust force and size. Because the
USM operates with great mechanical friction and needs no
add tional braking system, it has precise control
cha-acteristics [1-2].

Linear USM can be classified into two categories, self-
mo" ing machine and non self-moving machine. Generally,
whiie the thrust force of the non self-moving machine is
gre. ter, the speed of the self-moving machine is higher [3-4].

4s mentioned above, USM has numerous merits,
prompting researchers to perform widespread study for
sev:ral decades. However, precise analysis and design
remain incomplete because this machine uses a very
conplicated dynamic mechanism, such as electromechanical
coupling and mechanical friction. Because of the USM’s
con:plexity, precise analysis and design is very difficult in
the case of the analytic method. Therefore, a numerically
con:bined analytic method is necessary for more accurate
ana ysis.
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Thus, in this paper, USM is analyzed by a three-
dimensional finite element method, combining analytical
approaches.

2. Working Principle

Fig. 1 shows the vibrator of L1-B4 mode USM. Fig. 2
shows the operating principles.
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Fig. 1 - The Vibrator‘of L1-B4 mode USM [mm]

Elliptical
displacement

Fig. 2 The operating principle of L1-B4 mode USM
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The USM operates as a result of the elliptical motion at
the teeth of the vibrator. This elliptical motion is made by
double-mode vibrations. Double mode vibration is

composed of the first longitudinal (L1) and the fourth
bending (B4). Vertical direction motion is created by
bending vibration and horizontal direction motion by a
longitudinal one. Fig. 3 depicts the manufactured L1-B4
mode USM.

" Fig. 3 L1-B4 mode USM model

3. Finite Element Formulation

The matrix equations of (1) are bases for the derivation
of the finite element formulation, which relate mechanical
and electrical quantities in piezoelectric media [1].

T=c*S-¢'E
D=eS+¢°E

(1)

T: vector of mechanical stresses

S: vector of mechanical strains

E: vector of electric field

D: vector of dielectric displacement

- mechanical stiffness matrix for constant electric field E

¢*© permittivity matrix for constant mechanical strain S

e : piezoelectric matrix; superscript t means transposed

From Hamilton’s variation, the matrix equations (2)
and (3) can be obtained [5].

-0 ‘Mu+joD,u+K u+K ®=F,, (2
K'wou+Kye®=0;+0, 3)

K., . mechanical stiffness matrix
D,, : mechanical damping matrix
K., : piezoelectric coupling matrix
Ky : dielectric stiffness matrix

M: mass matrix

F 5o - mechanical body forces

Qs: electrical surface charges

Qp: electrical point charges

4. Finite Element Results

4.1 Transducer Analysis

The electrical impedance is important since it can clearly
depict the characteristic quantities such as the resonance
and anti-resonance frequencies of piezoelectric devices and
can be verified by simple experiments with a network
analyzer. Electrical impedance can be calculated by using
the external electrical charge and the potential on the
electrode. Then the electrical impedance is given by (4).

Zw)= w Y
jwg@,

Fig. 4 indicates the impedances from three-dimensional
calculations and experiments on the piezoelectric
transducer test model, whose experimental impedance is
referred from [1]. From these results, it is evident that the
finite element analysis routine in this paper is accurate.
Material data used in this paper is piezoelectric material
VIBRIT 420 referred from [1].
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Fig. 4 Impedance of piezoelectric transducer
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4.2 Analysis of Impedance
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Fig. 5 Impedance of L1-B4 mode USM
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Fig. 5 shows the impedance calculation of USM, taken
from Fig. 1. Generally, many resonance modes exist in
piezoelectric systems. However, vibration modes are
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different for each resonance frequency. USM in this paper
is operated in suitable L1-B4 mode, with a resonance
freq tency of about 36.8[KHz].

4.3 Analysis of [L.1-B4] Mode

F.g. 6 shows longitudinal displacement, called L1 mode.
Fig. 7 illustrates vertical bending displacement, called B4
moce. From these two figures, the contact points can be
dete mined by considering phase differences in the contact
poirts of each mode. That means phase differences
betv. een the contact points of L1 and B4 mode should be
180 Jegrees for linear motion of USM.
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Fig. 8 Elliptical motion at the teeth point

Fig. 8 shows the elliptical motion of USM at these
contact points. This motion can be derived by the
combination of horizontal and vertical displacement
amplitudes with the phase difference at contact points.
From this result using the three-dimensional finite element
method, it is verified that USM in this paper generates
linear motion properly.

5. Analysis of Contact Problem

It is difficult to calculate the velocity and thrust force
analytically because of complex mechanical contact
problems involved in motor dynamic characteristics [3, 5].
However, using some assumptions and experimental data, a
rough analytic estimation is possible.

In this paper, the deformation at contact point due to an
elastic characteristic is neglected during contact period
because the stress due to the preload is much higher than
that of the deformation.

The displacement can be divided into two types. One
type is a vertical displacement related to the thrust force.
The other type is a horizontal displacement related to the
speed. If there is no slip, the force is less than the normal
force multiplied by a static friction coefficient. But,
generally, there exists some slip, so it is assumed that the
force is the same as the normal force multiplied by a
dynamic friction coefficient.

Fig. 9 shows the method of mover speed calculation.
When vertical displacement, related to thrust force of the
vibrator is in a negative direction as shown in Fig. 8,
contact between vibrator and rail occurs. In this duration,
average horizontal displacement X,.., related to the speed,
can be calculated as shown in Fig. 8.
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Fig. 9 Velocity decision method

As such, the average mover velocity can be calculated
using equation (5).

Vmow = Ko XW (5)
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To understand and derive the contact related equations, a Finally, efficiency of power delivery from teeth vibration
free-body diagram of the vibrator and rail is needed. to rail is
Considering the contacting relation of vibrator and rail, the
free-body diagram is drawn as illustrated in Fig. 10. That is _ P, B, an
derived in an instant, when the speed of the mover is faster Teonace = o ion Pt P,

than that of the vibration. So Fy; is determined by this
speed relation, as shown in Fig. 9. In the contrary case, the
speed of the mover is slower than that of the vibration and
Fg direction is reversed with the same strength. When stick

Efficiency from input voltage to output power is

. o P
duration occurs, vibration and mover speed are equal. = (12)
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Fig. 10 Free-body diagram regarding contacting condition input voltage { V_rms |

Fig. 11 Velocity of input voltage variation (preload is 0.1N)
V.iv_« can be calculated using equation (6).

50+
Voo «=XXW (6) ] -*—-Otilrput power 3
5 el
The frictional force, which occurs because of Speed — ]
difference, can be analytically formulated as in (7). E 30
E‘S‘ 20 4
Ffri = Sign[vmav _Vvib_x].u * Fprf (7) §
104
(Vmav ~‘/vib_:) > O 9 Sign[Vmov ‘_Vvib_x] = 1 (Slip)
Voo~V =0 P signlV,,, -V, =0 (stick) o
Voo =V <0 > signfV,, -V, J=-1 (slip) Input voltage [V_rms]
) Fig. 12 Input voltage-Power relation
p
Thrust force Fiu, Table 1 Characteristics of USM (V;, = 60[V])
F, = lFfl ®) P, 0.6564 [W]
V.. 0.42 [m/sec]
P loss d the sl n 0.0785 [N]
ower loss due to the slip, 2, 0.0135 [W]
B, 0.0329 [W]
I)slip = lFfri 1 . Vmov _Vvib__x (9) nconmct 70.8 [%]
n 8.51 (%1
Output power,

Using these formulations, the characteristics of L1-B4
mode USM can be calculated. In this case the preload is

v. a0 0.1[N], just the weight of the vibrator itself. The simulation

out thr " Y mov
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restlt of velocity is confirmed by comparing the
experimental result as shown in Fig. 11. And the other
results are shown in Table 1 and Fig. 12.

6. Equivalent Circuit

Using the equivalent-circuit model for USM, it is simple to
con:ider the characteristics of the motor, but this model has
difficulty in finding equivalent-circuit parameters, such as
capzcitances, inductances, and resistance of USM, especially
contact related friction resistance and load resistance. To
establish equivalent-circuit for USM, equivalent-circuit
parameters should be calculated numerically. Fig. 13 shows a
well-accepted equivalent-circuit for a USM [3]. Cy4 indicates
capacitance due to the electrode of piezoelectric material and
L ard C indicates inductance and capacitance for resonance
charucteristics. Ryech, Raip, and Ry, represent the mechanical
vibration loss, the loss due to slip, and the power used for
movng, respectively.

Rrecn L C

out

Raip R

{1y Cdl/{\

Fig. 13 Equivalent-circuit of USM

6.1 Establishment of Reactive Parameters

A first, Cy4 parameters can be calculated by using slope
at ¢, as shown in Fig. 3 because the impedance of Cy is
dom:pant at a low frequency compared with resonance
frequency [6].

Ca=1/(slope, x g )1 (13)
And next, the total input capacitance can be defined,

Croa=Cat+C 14

From analytic calculations of resonance and anti-resonance
frequency, Cy can be calculated by using (15) [4].

2

Ca Eg)r_ZCTmal (15)
(7]

Using (13) and (14) C can be calculated by using (16) [6].

2

“—1) (16)

PDa
=

C =Ca
Qr

And from the definition of resonance frequency,
inductance, L, is to be (17).

L=—1 (17)

6.2 Establishment of Loss of USM

Losses of piezoelectric media are composed of
mechanical vibration loss and dielectric loss. However,
dielectric loss can be negligible because it is small
compared with mechanical vibration loss [7]. Mechanical
vibration loss of USM, Py ecn10sss Can be computed by using
finite element calculation of USM, (18) [8}.

1 -
P inech-toss = EMvzwer I (18)

Where, M, v, @, and @, are mass of the sample,

vibrating velocity, resonant angular frequency, and
mechanical quality factor, respectively. In (18), Angular
frequency is obtained from Fig. 5. Vibrating velocity of
USM is computed by using the angular frequency and
displacements at the node, which has maximum value.
Losses due to the mechanical vibration and slip are
computed by using (18) and (9). Power used for moving is
calculated by using (10). The results are tabulated in Table 2.

Table 2 Vibration loss powers and loss parameters

B echtoss 0.0042 [W]
R 0.1921 [£2]
R, 0.4239 (2]
R, 0.1739 [2]

7. Conclusion

In this paper, a three-dimensional finite element method
and construction of equivalent-circuit for linear ultrasonic
motor are presented. The validity of three-dimensional
finite element routine in this paper is experimentally
confirmed by analyzing impedance of a piezoelectric
transducer. Using this confirmed finite element routine,
impedance and vibration mode of the linear ultrasonic
motor are calculated. Elliptical motion of contact point
between the vibrator and rail of the linear ultrasonic motor
is shown for determination of contact points. And by using
the finite element method and analytic equations,
characteristics of the linear ultrasonic motor, such as thrust
force, speed, losses, powers and efficiency, are calculated.
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In this process, the contact problem is considered. The
results are confirmed by experiment results. Finally,
equivalent circuit parameters of the linear ultrasonic motor
are obtained by the three-dimensional finite element
method and analytic equations.

There is some degree of difficulty due to the small
efficiency of the L1-B4 USM, because friction is caused
between the mover and rail mechanism of USM. However,
because USMs have many merits, such as compact size,
good breaking characteristics, silent operation, and do not
require electro-magnetic fields, they can be used in many
industrial applications.
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