Effect of internal pressure variation on the ceramic particle separation characteristics : computer simulation

분리기 내부 압력 변화에 따른 세라믹 입자 분리 거동 전산모사

  • 우효상 (CPRC, 한양대학교 세라믹공학과) ;
  • 심광보 (CPRC, 한양대학교 세라믹공학과) ;
  • 정용재 (CPRC, 한양대학교 세라믹공학과)
  • Published : 2003.12.01

Abstract

By controlling the internal pressure in the cyclone separator, we investigated the separation charateristics of $Al_2O_3$, $Fe_2O_3$ particles with the internal pressure variation. 3-dimensional Langrangian approach was applied for the analysis of the particles separation, and then the minimum cut diameter of the separated particles and the separation rate were calculated through tracking the particle trajectories. The density of the argon gas for transporting particles was decreased corresponding the pressure decrease, consequently, caused the internal pressure drop in the cyclone separator. For that reason the finer particles were separated as the pressure was changed from an atmospheric pressure to an low pressure. Specifically, at 50 torr pressure, $Al_2O_3$ particles of the size of about 4 $\mu\textrm{m}$ and $Fe_2O_3$particles of about 3 $\mu\textrm{m}$ could be separated.

분리기 내 압력 조절을 통하여 압력 변화가 세라믹 입자 $Al_2O_3$, $Fe_2O_3$ 분급에 미치는 영향을 수치 해석적으로 분석하였다. 입자 분급 해석을 위해 3차원 Lagrangian approach를 이용하였으며, 이를 통해 입자의 분리기 내 거동 경로를 추적하여 각 압력에 따른 분리 가능한 최소 입자 크기(cut-diameter)와 분리율(separation rate)를 계산하였다. 압력 감소는 입자를 운반하는 아르곤 가스의 밀도를 감소시키면서, 분리기 내부 압력 손실을 줄이는 원인이 되었다. 이로 인해 상압에서 분리기 압력이 저압 상태로 변함에 따라, 더 미세한(수 $\mu\textrm{m}$) 입자가 분리 가능함이 예측되었다. 특히 50 torr의 저압 하에서 계산된 세라믹 입자의 분급 양상을 분석하면,$Al_2O_3$ 입자는 4 $\mu\textrm{m}$, $Fe_2O_3$경우는 3$\mu\textrm{m}$ 크기의 입자 분리가 가능하였다.

Keywords

References

  1. Proceeding of the 3rd ASME/JSME Joint Fluids Engineering Conference, Paper No. FEDSM99-7865 Experimental and Numerical investigation of Particle separation in a symmetrical double cyclone separator Th.Frank;Q.Yu;E.Wassen;J.Schneider
  2. Col. and Surf. A v.109 Three-dimensional simulation of air cyclone and particle separation by a reversed-type cyclone H.Yoshida https://doi.org/10.1016/0927-7757(95)03469-2
  3. Powder Tech. v.63 Gas-solid flow and collection of solids in a cyclone separator L.X.Zhou;S.L.Soo https://doi.org/10.1016/0032-5910(90)80006-K
  4. Exp. Therm. And Fluid Sci. v.27 Experimental fluid dynamic characterization of a cyclone chamber G.Solero;A.Coghe https://doi.org/10.1016/S0894-1777(02)00221-2
  5. J. Aerosol Sci. v.9 Numerical modelling of the fluid and particle penetration through small sampling cyclones L.Ma;D.B.Ingham;X.Wen
  6. anadian Metallurgical Quarterly v.36 Advances in the numerical simulation of hydrocyclone classification J.Averous;R.Fuentes https://doi.org/10.1016/S0008-4433(97)00020-7
  7. Powder Technol v.118 Particle separation by iinoya's type gas cyclone H.Yoshida;K.Fucui;K.Yoshida;E.Shinoda https://doi.org/10.1016/S0032-5910(01)00290-X
  8. Powder Tech. v.127 Flow pattern in reverse-flow centrifugal separator W.Peng;A.C.Hoffmann;P.J.A.J.Boot;A.Udding;H.W.A.Dries;A.Ekker;J.Kater https://doi.org/10.1016/S0032-5910(02)00148-1
  9. CD-ROM Proceedings of the 3rd International Conference on Multiphase Flow-ICMF98 lagrangian prediction of dispersion gas-particle flow in cyclone separator T.H.Frank;E.Wassen;Q.Yu
  10. CFD-ACE(U) modules(ver. 6.6) CFD Research Corporation
  11. J. Kor. Cryst. Growth v.13 Numerical investigation of ceramic particle movement for injected gas flow rate in cyclone separator system H.S.Woo;K.B.Shim;Y.C.Chung
  12. Int. Comm. Heat Mass Trans v.28 Theoretical investigation of pressure iosses in cyclone separators A.Avci;I.Karagoz https://doi.org/10.1016/S0735-1933(01)00218-4
  13. Int. Comm. Heat Mass Trans v.27 A mathematical model for the determination of acyclone performance A.Avvi;I.Karagoz https://doi.org/10.1016/S0735-1933(00)00107-X