Growth and Yield Response of Transgenic Rice Plants Expressing Protoporphyrinogen Oxidase Gene from Bacillus subtilis

  • Kuk, Yong-In (Biotechnology Research Institute, Chonnam National University) ;
  • Chung, Jung-Sung (Faculty of Applied Plant Science, Chonnam National University) ;
  • Sunyo Jung (Biotechnology Research Institute, Chonnam National University) ;
  • Kyoungwhan Back (Department of Genetic Engineering, Chonnam National University) ;
  • Kim, Han-Yong (Faculty of Applied Plant Science, Chonnam National University) ;
  • Guh, Ja-Ock (Faculty of Applied Plant Science, Chonnam National University)
  • Published : 2003.09.01

Abstract

Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase (Protox), the last shared enzyme of the porphyrin pathway in the expressed cytoplasm or the plastids, were compared with non-trangenic rice plants in their growth characteristics such as tiller number, plant height, biomass, and yield. Transgenic rice plants of $\textrm{T}_3$ generation had 8 to 15 % and 25 to 43% increases in tiller number compared to non-transgenic rice plants at 4 and 8 weeks after transplanting(WAT); similar values were observed for $\textrm{T}_4$ generation at 4 and 8 WAT. However, the plant height in both $\textrm{T}_3$ and $\textrm{T}_4$ generations was similar between transgenic rice plants and non-transgenic rice plants at 4 and 8 WAT. Transgenic rice plants had 13 to 32% increase in above-ground biomass and 9 to 28% increase in grain yield compared to non-transgenic rice plants, demonstrating that biomass and yield correlate with each other. The increased grain yield of the transgenic rice plants was closely associated with the increased panicle number per plant. The percent of filled grain, thousand grains and spikelet number per panicle were similar between transgenic and non-transgenic rice plants. Generally, the growth and yield of transgenic generations ($\textrm{T}_2$, $\textrm{T}_3$, and $\textrm{T}_4$) and gene expressing sites (cytoplasm-expressed and plastid-targeted transgenic rice plants) were similar, although they slightly varied with generations as well as with gene expressing sites. The transgenic rice plants had promotive effects, indicating that regulation of the porphyrin pathway by expression of B. subtilis Protox in rice influences plant growth and yield.

Keywords

References

  1. Adomat, C. and P. $B\ddot oger$. 1999. Cloning, sequence, expression, and characterization of protoporphyrinogen IX oxidase from chicory. Pestic. Biochem. Physiol. 66 : 49-62 https://doi.org/10.1006/pest.1999.2441
  2. Beale, S. I. and J. D. Weinstein. 1990. Tetrapyrrole metabolism in photosynthetic organism, In. H. A. Dailey (ed.), Biosynthesis of Heme and Chlorophylls. McGraw-hill, New York, pp. 287-391
  3. Chakraborty, N. and B. C. Tripathy. 1992. Involvement of singlet oxygen in 5-aminolevulinic acid-induced photodynamic damage of cucumber (Cucumis sativa L.) chloroplasts. Plant Physiol. 98:7-11 https://doi.org/10.1104/pp.98.1.7
  4. Choi, K. W., O. Han, H. J. Lee, Y. C. Yun, Y. H. Moon, M. Kim, Y. I. Kuk, S. U. Han and J. O. Guh. 1998. Generadon of resistance to the diphenyl ether herbicide, oxyfluorfen, via expression of the Bacillus subtilis protoporphynnogen oxidase gene in transgenic tobacco plants. Biosci. Biotechnol. Biochem. 62: 558-560 https://doi.org/10.1271/bbb.62.558
  5. Corrigall, A. V., K. B. Siziba, M. H. Maneli, E. G. Shephard, M. Ziman, T. A. Dailey, R. E. Kirsh, and P. N. Messner. 1998. Purification and kinetic studies on a cloned protoporphyrinogen oxidase from the aerobic bacterium Baillus subtilis. Arch. Biochem. Biophys. 358 : 251-256 https://doi.org/10.1006/abbi.1998.0834
  6. Cure, J. D., B. Acock. 1986. Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38 : 127-145 https://doi.org/10.1016/0168-1923(86)90054-7
  7. Dailey, H. A. and T. A. Dailey. 1996. Protoporphyrmogen oxidase of Myxococcus xanthus: Expression, purification, and character-ization of the cloned enzyme. J. Biol. Chem. 271 : 8714-8718 https://doi.org/10.1074/jbc.271.15.8714
  8. Dailey, T. A., P. Meisner, and H. A. Dailey. 1994. Expression of a cloned protoporphyhnogen oxidase. J. Biol. Chem. 269 : 813-815
  9. De Costa, W. A. J. M., W. M. W. Weerakoon, H. M. L. K. Herath, and R. M. I. Abeywardena. 2003. Response of growth and yield of rice (Oryza sativa) to elevated atmospheric carbon dioxide in the subhumid zone of Sri Lanka. J. Agronomy & Crop Sci. 189 : 83-95 https://doi.org/10.1046/j.1439-037X.2003.00013.x
  10. Duke, S. O., U. B. Nandihalli, H. J. Lee, and M. V. Duke. 1994. Protopoiphyrinogen oxidase as the optimal herbicide site in the porphyrin pathway. Amer. Chem. Soc. Symp. Ser. 559 : 191-204
  11. Evans, L. T. 1993. Crop evolution, adaptation and yield. Cam-bridge University Press, 178-185 pp
  12. Hiei, Y., T. Komari, and T. Kubo. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35 : 205-218 https://doi.org/10.1023/A:1005847615493
  13. Hotta, Y., T. Tanaka, T. Takaoka, Y. Takeuchi, and M. Konnai. 1997. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul. 22 : 109-114 https://doi.org/10.1023/A:1005883930727
  14. International Rice Research Institute (IRRI). 2002. Rice Almanac (third edition, eds. J. L. Maclean et al.). International Rice Research Institute, Manila, the Philippines, 6 pp
  15. Jilta, D. S., G. S. Rogers, S. P. Seneweera, A. S. Basra, R. J. Old-field, and J. P. Conroy. 1997. Accelerated early growth of rice at elevated $CO_2$ Is it related to developmental changes in the shoot apex? Plant Physiol. 115 : 15-22
  16. Jung S., Chung J. S., Jang S. M., Guh J. O., Lee H. J., Chon S., Kim K., Ha S. B., and Back K. 2003. Either soluble or plastidic expression of recombinant protoporphynnogen oxidase modu-lates tetrapyrrole biosynthesis and photosynthetic efficiency in transgenic rice. Biosci. Biotechnol. Biochem. 67 : 1472-1478 https://doi.org/10.1271/bbb.67.1472
  17. Lee, H. J., S. B. Lee, J. S. Chung, S. U. Han, O. Han, J. O. Guh, J. S. Jeon, G. An, and K. Back. 2000. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Plant Cell Physiol. 41 : 743-749 https://doi.org/10.1093/pcp/41.6.743
  18. Lermontova, I. and B. Grimm. 2000. Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphe-nyl-ether herbicide acifluorfen. Plant Physiol. 122 : 75-83 https://doi.org/10.1104/pp.122.1.75
  19. Lermontova, I., E. Kruse, H. P. Mock, and B. Grimm. 1997. Clon-ing and characterization of a plastidal and a mitochondrial iso-form of tobacco protoporphyrinogen IX oxidase. Proc. Natl Acad. Sci. USA 94 : 8895-8900 https://doi.org/10.1073/pnas.94.16.8895
  20. Matsumoto, H., Y. Tanida, and K. Ishizuka. 1994. Porphyrin inter-mediate involved in herbicidal action of $\delta-aminolevulinic$ acid on duckweed (Lemna pausicostata Helgelm.). Pestic. Biochem. Physiol. 48:214-221 https://doi.org/10.1006/pest.1994.1022
  21. Moya, T. B., L. H. Ziska, O. S. Namuco, and D. Olszyk. 1998. Growth dynamics and genotype variations in tropical fieldgrown paddy rice (Oryw sativa L.) in response to increasing carbon dioxide and temperature. Global Change Biol. 4 : 645-656 https://doi.org/10.1046/j.1365-2486.1998.00180.x
  22. Murata, Y. and S. Matsushima. 1975. Rice. In. L. T. Evans (ed.), Crop Physiology: Some Case Histories. Cambridge Universit Press, Cambridge, UK, pp. 73-99
  23. Narita, S., R. Tanaka, T. Ito, K. Okada, S. Taketani, and H. Inokuchi. 1996. Molecular cloning and characterization of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 182 : 169-175 https://doi.org/10.1016/S0378-1119(96)00545-8
  24. Nishimura, K., S. Taketani, and H. Inokuchi. 1995. Cloning of a human cDNA for protoporphyrinogen oxidase by complemen-tation in vivio of a hemG Mutant of Esheiichia coli. J. Bil. Chem. 270: 8076-8080 https://doi.org/10.1074/jbc.270.14.8076
  25. Poorter, H. 1993. Interspecific variation in the growth response of plants to an elevated ambient $CO_2$ concentration. Vegetatio 104 : 77-97 https://doi.org/10.1007/BF00048146
  26. Rashid, H., S. Yokoi, K. Toriyama, and K. Hinata. 1996. Trans-genie plant production mediated by Agrobacterium in indica rice. Plant Cell Rep. 15 : 727-730 https://doi.org/10.1007/BF00232216
  27. Rebeiz, C. A. and P. A. Castelfranco. 1973. Protochlorophyll and chlorophyll biosynthesis in cell-free system from higher plants. Annu. Rev. Plant Physiol. 24 : 129-172 https://doi.org/10.1146/annurev.pp.24.060173.001021
  28. RDA. 1998. Guidance methods for food crop cultivation, pp 55-86
  29. SAS (Statistical Analysis System). 2000. SAS/STAT users guide. Version 7. Cary, NC: Statistical Analysis Systems Institute. Electronic Version
  30. Seneweera, S. P., P. J. Milham, and J. Conroy. 1994. Influence of elevated $CO_2$ and phosphorus nutrition on the growth and yield of a short-duration rice (Oryza sativa L. cv. Jarrah). Aust. J. Plant Physiol. 21:281-292 https://doi.org/10.1071/PP9940281
  31. Ziska, L. H., O. S. Namuco, T. B. Moya, and J. Quilang. 1997. Growth and yield responses of field-grown tropical rice to increasing carbon dioxide and air temperature. Agron. J. 89 : 45-53 https://doi.org/10.2134/agronj1997.00021962008900010007x