Surfactant-Free Microspheres of Poly(${\varepsilon}-caprolactone$)/Poly(ethylene glycol)/Poly(${\varepsilon}-caprolactone$) Triblock Copolymers as a Protein Carrier

  • Published : 2003.06.01

Abstract

The aim of this study is to prepare biodegradable microspheres without the use of surfactants or emulsifiers for a novel sustained delivery carriers of protein drugs. A poly($\varepsilon$-caprolactone)/poly(ethylene glycol)/poly($\varepsilon$-caprolactone) (CEC) triblock copolymer was synthesized by the ring-opening of $\varepsilon$-caprolactone with dihydroxy poly (ethylene glycol) to prepare surfactant-free microspheres. When dichloromethane (DCM) or ethyl formate (EF) was used as a solvent, the formation of microspheres did not occur. Although the microspheres could be formed prior to lyophilization under certain conditions, the morphology of microspheres was not maintained during the filtration and lyophilization process. Surfactant-free microspheres were only formed when ethyl acetate (EA) was used as the organic solvent and showed good spherical micro-spheres although the surfaces appeared irregular. The content of the protein in the micro-sphere was lower than expected, probably because of the presence of water channels and pores. The protein release kinetics showed a burst release until 2 days and after that sustained release pattern was showed. Therefore, these observations indicated that the formation of microsphere without the use of surfactant is feasible, and, this the improved process, the protein is readily incorporated in the microsphere.

Keywords

References

  1. Alonso, M. J., Gupta, R. K., Min, C., Siber, G. R., and Langer, R., Biodegradable microspheres as controlled-release tetanus toxoid delivery system. Vaccine, 12, 299-306 (1994) https://doi.org/10.1016/0264-410X(94)90092-2
  2. Bodmier, D., Kissel, T., and Traechslin, E., Factors influencing the release of peptide and proteins from biodegradable parameteral depot systems. J. Control Release, 12, 129-138 (1992)
  3. Bouillot, P., Babak, V., and Dellacherie, E., Novel bioresorbable and bioeliminable surfactants for microsphere preparation. Pharm. Res., 16, 148-154(1999a) https://doi.org/10.1023/A:1018895417915
  4. Bouillot, P., Ubrich, N., Sommer, F., Duc, T. M., Loeffler, J. P., and Dellacherie, E., Protein encapsulation in biodegradable amphiphilic microspheres. Int. J. Pharm., 181, 159-172 (1999b) https://doi.org/10.1016/S0378-5173(99)00023-X
  5. Boury, F., Marchais, H., Proust, J. E., and Benoit, J. P., Bovine serum albumin release from poly($\alpha$-hydroxy acid) microspheres: effect of polymer molecular weight and surface properties. J. Control Release, 45, 75-86(1997) https://doi.org/10.1016/S0168-3659(96)01547-7
  6. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram Quantities of protein utilizing for the principle of protein-dye binding. Biochemistry, 72, 248-254 (1976)
  7. Carrio, A., Schwach, G., Coudane, J., and Vert, M., Preparation and degradation of surfactant-free PLAGA microspheres. J. Control Release, 37, 113-121 (1995) https://doi.org/10.1016/0168-3659(95)00070-O
  8. Celebi, N., Erden, N., and Turkyilmaz, A., The preparation and evaluation of salbutamol sulphate containing poly(lactic acidco-glycolic acid) microspheres with factorial designed-based studies. Int. J. Pharm., 136, 89-100 (1996) https://doi.org/10.1016/0378-5173(96)04491-2
  9. Cerrai, P., Tricoli, M., Andruzzi, F., Paci, M., and Paci, M., Polyether-polyester block copolymer by non-catalysed polymerization of e-caprolactone with poly-ethyleneglycol. Polymer, 30, 338-343 (1989) https://doi.org/10.1016/0032-3861(89)90126-2
  10. Ciftci, K., Suheyla Kas, H., Atilla Hincal, A., Meral Ercan, T., Guven, O., and Ruacan, S., In vitro and in vivo evaluation of PLGA (50/50) microspheres containing 5-fluorouracil prepared by a solvent evaporation method. Int. J. Pharm., 131, 73-82 (1996) https://doi.org/10.1016/0378-5173(95)04369-1
  11. Cho, S. W., Song, S. H., and Choi, Y. W., Effects of solvent selection and fabrication method on the characteristics of biodegradable poly(lactide-co-glycolide) microspheres containing ovalbumin. Arch. Pharm. Res., 23, 385-390 (2000) https://doi.org/10.1007/BF02975452
  12. Dunn, R., Hardee, G., Polson, A., Bennet, A., Martin, S., Wardley, R., Moseley, W., Krinick, N., Foster, T., Frank, K., and Cox, S., In-situ forming biodegradable implants for controlled release veterinary applications. Proc. Int. Symp. Control. Release Bioact. Mater., 22, 91-92 (1995)
  13. Fessi, H., Puisieux, F., Devissaguet, J. P., Ammoury, and N., Benita, S., Nanocapsules formation by interfacial deposition following solvent displacement. Int. J. Pharm., 55, R1-R4 (1989) https://doi.org/10.1016/0378-5173(89)90281-0
  14. Govender, T., Stolnik, S., Garnett, M. C., Illum, L., and Davis, S. S., PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control Release, 57, 171-185 (1999) https://doi.org/10.1016/S0168-3659(98)00116-3
  15. Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., and Langer. R., Biodegradable long-circulating polymeric nanospheres. Science, 263,1600-1603 (1994) https://doi.org/10.1126/science.8128245
  16. Hueper, W. C., Public health hazards from environmental chemical carcinogens, mutagens and teratogens. Health Phys., 21, 689-707 (1971) https://doi.org/10.1097/00004032-197111000-00010
  17. Jeffery, H., Davis, S. S., and O'Hagan, D. T., The preparation and characterization of poly(lactide-co-glycolide) microparticles. I. Oil-in water emulsion solvent evaporation. Int. J. Pharm., 77, 169-175 (1991) https://doi.org/10.1016/0378-5173(91)90314-E
  18. Jeffery, H., Davis, S. S., and O'Hagan, D. T., The preparation and characterization of poly (lactide-co-glycolide)nicroparticles. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharm. Res., 10, 362-368 (1993) https://doi.org/10.1023/A:1018980020506
  19. Jeong, Y. I., Cho, C. S., Kim, S. H., Ko, K. S., Kim, S. I., Shim, Y. H., and Nah, J. W., Preparation of poly(DL-lactide-coglycolide) nanoparticles without surfactant. J. Appl. Polym. Sci., 80, 2228-2236 (2001) https://doi.org/10.1002/app.1326
  20. Kreitiz, M. R., Domm, J. A., and Mathiowitz, E., Controlled delivery of therapeutics from microporous membranes. II. In vitro degradation and release of heparin-loaded poly(DLlactide-co-glycolide). Biomaterials, 18, 1645-1651 (1997) https://doi.org/10.1016/S0142-9612(97)00106-3
  21. Landry, F. B., Bazile, D. V., Spenlehauer, G., Veillard, M., and Kreuter, J., Degradation of poly(DL-lactic acid) nanoparticles coated with albumin in digestive fluids (USP XXII). Biomaterials, 17, 715-723 (1996) https://doi.org/10.1016/0142-9612(96)86742-1
  22. Landry, F. B., Bazile, D. V., Spenlehauer, G., Veillard, M., and Kreuter, J., Release of the fluorescent marker Prodan from poly(DL-lactic acid) nanoparticles coated with albumin or polyvinyl alcohol in model digestive fluids (USP XXII). J. Control Release, 44, 227-236 (1997) https://doi.org/10.1016/S0168-3659(96)01526-X
  23. Lavelle E. C., Sharif, S., Thomas, N. W., Holland, J., and Davis, S. S., The importance of gastrointestinal uptake of particles in the design of oral delivery systems. Adv. Drug Del. Rev., 18, 5-22 (1995) https://doi.org/10.1016/0169-409X(95)00048-C
  24. Leach, K. J. and Mathiowitz, E., Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA) 20:80. I. In vitro degradation. Biomaterials, 19, 1973-1980 (1998) https://doi.org/10.1016/S0142-9612(98)00108-2
  25. Lee, S. C., Oh, J. T., Jang, M. H., and Chung, S. I., Quantitative analysis of polyvinyl alcohol on the surface of poly(DL-lactideco-glycolide) microparticles prepared by solvent evaporation method: effect of particle size and PVA concentration. J. Control Release, 59, 123-132 (1999) https://doi.org/10.1016/S0168-3659(98)00185-0
  26. McGee, J. P., Davis, S. S., and OíHagan, D. T., The immunogenicity of a model protein entrapped in poly(lactide-coglycolide) microparticles prepared by a novel phase separation technique. J. Control Release, 31, 55-60 (1994) https://doi.org/10.1016/0168-3659(94)90251-8
  27. Mehta, R. C., Thanoo, B. C., and DeLuca, P. P., Peptide containing microspheres from low molecular weight and hydrophilic poly(D,L-lactide-co-glycolide), J. Control Release, 41, 249-257 (1996) https://doi.org/10.1016/0168-3659(96)01332-6
  28. O'Hagan, D. T., Jeffery, H., and Davis, S. S., The preparation and characterization of poly(lactide-co-glycolide) microcapsules: III. Microparticle/polymer degradation rates and the in vitro release of a model protein. Int. J. Pharm., 103, 37-45 (1994) https://doi.org/10.1016/0378-5173(94)90201-1
  29. Ogawa, Y., Yamamoto, M., Okada, T., Yashiki, T., and Shimamoto, T., A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic or copoly(lactic/glycolic) acid. Chem. Pharm. Bull., 36, 1095-1103 (1988) https://doi.org/10.1248/cpb.36.1095
  30. Pradhan, R. S. and Vasavada, R. C., Formulation and in vitro release study on poly(D,L-lactide) microspheres containing hydrophilic compounds: glycine homopepides. J. Control Release, 30, 143-154 (1994) https://doi.org/10.1016/0168-3659(94)90261-5
  31. Radomsky, M. L., Brouwer, G., Floy, B. J., Loury, D. J., Chu, F., Tipon, A. J., and Sanders, L. M., The controlled release of ganirelix from the Artigel injectable implant system. Proc. Int. Symp. Control. Release Bioact. Mater., 20, 458-459 (1993)
  32. Rafati, H., Coombes, A. G. A., Adler, J., Holland, J., and Davis, S. S., Protein-loaded poly(D,L-lactide-co-glycolide) microparticles for oral administration: formulation, structural and release characteristics. J. Control Release, 43, 89-102 (1997) https://doi.org/10.1016/S0168-3659(96)01475-7
  33. Scholes, P. D., Coombes, A. G. A., Illum, L., Davis, S. S., Vert, M., and Davies, M. C., The preparation of sub-200 nm poly (lactide-co-glycolide) microspheres for site-specific drug delivery, J. Control Release, 25, 145-153 (1993) https://doi.org/10.1016/0168-3659(93)90103-C
  34. Shah, S. S., Cha, Y., and Pitt, C. C., Poly(glycolic acid-co-DLlactic acid): diffusion or degradation controlled drug delivery?, J. Control Release, 18, 261-270 (1992) https://doi.org/10.1016/0168-3659(92)90171-M
  35. Shakesheff, K. M., Evora, C., Soriano, I., and Langer, R., The adsorption of poly(vinyl alcohol) to biodegradable microparticles studied by X-ray photoelectron spectroscopy (XPS). J. Colloid. Interface Sci., 185, 538-547 (1997) https://doi.org/10.1006/jcis.1996.4637
  36. Siegel, R. A. and Langer, R., Mechanistic studies of macromolecular drug release from macroporous polymers. II: Model of slow kinetics of drug release. J. Control Release, 14, 153-167 (1991)
  37. Sjostrom, B., Kronberg, Br., and Carlfors, J., A method for the preparation of submicron particles of sparingly water-soluble drugs by precipitation in oil-in water emulsions, I. Influence of emulsification and surfactant concentration. J. Pharm. Sci., 82, 579-583 (1993a) https://doi.org/10.1002/jps.2600820607
  38. Sjostrom, B., Bergenstahl, B., and Kronberg, B., A method for the preparation of submicron particles of sparingly watersoluble drugs by precipitation in oil-in water emulsions. II: Influence of the emulsifier, the solvent, and the drug substance. J. Pharm. Sci., 82, 585-589 (1993b)
  39. Spenlehauer, G., Vert, M., Benoit, J. P., and Boddart, A., In vitro and in vivo degradation of poly(DL-lactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials, 10, 557-563 (1989) https://doi.org/10.1016/0142-9612(89)90063-X
  40. Tipton, A. J., Fujita, S. M., Frank, K. R., and Dunn, R. L., A biodegradable injectable delivery system for nonsteroidal anti-inflammatory drugs. Pharm. Res., 8, S196 (1991) https://doi.org/10.1023/A:1015887919560
  41. Venier-Julienne, M. C. and Benoit, J. P., Preparation, purification and morphology of polymeric nanoparticles as drug carriers. Pharm. Acta Helv., 71, 121-128 (1996) https://doi.org/10.1016/0031-6865(95)00059-3
  42. Yamaoka, T., Tabata, Y., and Ikada, Y., Comparison of body distribution of poly(vinyl alcohol) with other water-soluble polymers after intravenous administration. J. Pharm. Phamacol., 47, 479-486 (1995a) https://doi.org/10.1111/j.2042-7158.1995.tb05835.x
  43. Yamaoka, T., Tabata, Y., and Ikada, Y., Fate of water-soluble polymers administered via different routes. J. Pharm. Sci., 84, 349-354 (1995b) https://doi.org/10.1002/jps.2600840316
  44. Yang, Y. Y., Chung, T. S., and Ng, N. P., Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials, 22, 231-241 (2001) https://doi.org/10.1016/S0142-9612(00)00178-2
  45. Yeh, M. K., Coombes, A. G. A., Jenkins, P. G., and Davis, S. S., A novel emulsification-solvent extraction technique for production of protein loaded biodegradable microparticles for vaccine and drug delivery. J. Control Release, 33, 437-445 (1995) https://doi.org/10.1016/0168-3659(94)00123-C
  46. Yeo, Y., Baek, N., and Park, K., Microencapsulation methods for delivery of protein drugs. Biotech. Biop. Eng., 6, 213-230 (2001) https://doi.org/10.1007/BF02931982