Astaxanthin Biosynthesis Enhanced by Reactive Oxygen Species in the Green Alga Haematococcus pluvialis

  • Published : 2003.12.01

Abstract

The unicellular green alga Haematococcus pluvialis has recently attracted great inter-est due to its large amounts of ketocarotenoid astaxanthin, 3,3'-dihydroxy-${\beta}$,${\beta}$-carotene-4,4'-dione, widely used commercially as a source of pigment for aquaculture. In the life cycle of H. pluvialis, astaxanthin biosynthesis is associated with a remarkable morphological change from green motile vegetative cells into red immotile cyst cells as the resting stage. In recent years we have studied this morphological process from two aspects: defining conditions governing astaxanthin biosynthesis and questioning the possible function of astaxanthin in protecting algal cells against environmental stress. Astaxanthin accumulation in cysts was induced by a variety of environmental conditions of oxidative stress caused by reactive oxygen species, intense light, drought, high salinity, and high temperature. In the adaptation to stress, abscisic acid induced by reactive oxygen species, would function as a hormone in algal morphogenesis from veget ative to cyst cells. Furthermore, measurements of both in vitro and in vivo antioxidative activities of astaxanthin clearly demonstrated that tolerance to excessive reactive oxygen species is greater in astaxanthin-rich cysts than in astaxanthin-poor cysts or astaxanthin-less vegetative cells. Therefore, reactive oxygen species are involved in the regulation of both algal morph O-genesis and carotenogenesis, and the accumulated astaxanthin in cysts can function as a protective agent against oxidative stress damage. In this study, the physiological roles of astaxanthin in stress response and cell protection are reviewed.

Keywords

References

  1. J. Appl. Phycol. v.4 Microalgae aquaculture feeds Benemann,J.R. https://doi.org/10.1007/BF02161209
  2. Lipids v.24 Antioxidant activity of β-carotene-related carotenoids in solution Terao,J. https://doi.org/10.1007/BF02535085
  3. Arch. Biochem. Biophys. v.297 Astaxanthin and cathaxanthin are potent antioxidants in a membrane model Palozza,P.;N.I.Krinsky https://doi.org/10.1016/0003-9861(92)90675-M
  4. Biotechnol. Lett. v.21 Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis Kobayashi,M.;Y.Sakamoto https://doi.org/10.1023/A:1005445927433
  5. Trends Biotechnol. v.21 Haematococcus astaxanthin: Applications for human health and nutrition Guerin,M.;M.E.Huntley;M.Olaizola https://doi.org/10.1016/S0167-7799(03)00078-7
  6. Crit. Rev. Biotechnol. v.11 Astaxanthin from microbial sources Johnson,E.A.;G.H.An https://doi.org/10.3109/07388559109040622
  7. J. Ferment. Bioeng. v.71 Astaxanthin production by a green alga, Haematococcus plusialis accompanied with morphological changes in acetate media Kobayashi,M.;T.Kakizono;S.Nagai https://doi.org/10.1016/0922-338X(91)90346-I
  8. Adv. Biochem. Eng. Biotechnol. v.53 Microbial carotenoids Johnson,E.A.;W.A.Schroeder
  9. J. Appl. Phycol. v.4 Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3'S)-astaxanthin esters Grung,M.;F.M.L.D'Souza;M.Borowitzka;S.Liaaen-Jensen https://doi.org/10.1007/BF02442465
  10. J. Appl. Phycol. v.3 Culture of the astaxanthin-producing green alga Hamatococcus pluvialis: 1. Effect of nutrients on growth and cell type Borowitzka,M.A.;J.M.Huisman;A.Osborn https://doi.org/10.1007/BF02392882
  11. Plant Cell Physiol. v.32 Astaxanthin accumulation in the green alga Haematococcus pluvialis Boussiba,S.;A.Vonshak https://doi.org/10.1093/oxfordjournals.pcp.a078171
  12. J. Phycol. v.30 Cell cycle and accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta) Lee,Y.K.;S.Y.Ding https://doi.org/10.1111/j.0022-3646.1994.00445.x
  13. J. Ferment. Bioeng. v.84 Morphological changes in the life cycle of the green alga Haematococcus pluvialis Kobayashi,M.;Y.Kurimura;T.Kakizono;N.Nishio;Y.Tsuji https://doi.org/10.1016/S0922-338X(97)82794-8
  14. Appl. Environ. Microbiol. v.59 Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicelluloar alga, Haematococcus pluvialis Kobayashi,M.;T.Kakizono;S.Nagai
  15. J. Ferment. Bioeng. v.74 Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis Kobayashi,M.;T.Kakizono;N.Nishio;S.Nagai https://doi.org/10.1016/0922-338X(92)90271-U
  16. Plant Growth Regul. v.22 Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis Kobayashi,M.;N.Hirai;Y.Kurimura;H.Ohigashi;Y.Tsuji https://doi.org/10.1023/A:1005862809711
  17. Biotechnol. Lett. v.19 Light independent astaxanthin production by the green microalga Haematococcus pluvialis under salt stress Kobayashi,M.;Y.Kurimura;Y.Tsuji https://doi.org/10.1023/A:1018372900649
  18. Biotechnol. Lett. v.16 Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures Tjahjono,A.E.;Y.Hayama;T.Kakizono;Y.Terada;N.Nishio;S.Nagai https://doi.org/10.1007/BF01021659
  19. J. Gen. Microbiol. v.139 Antioxidant role of carotenoids in Phaffia rhodozyma Schroeder,W.A.;E.A.Johnson https://doi.org/10.1099/00221287-139-5-907
  20. Planta v.190 Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Shaish,A.;M.Avron;U.Pick;A.Ben-Amotz
  21. Appl. Microbiol. Biotechnol. v.48 Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis Kobayashi,M.;T.Kakizono;N.Nishio;S.Nagai;Y.Kurimura;Y.Tsuji https://doi.org/10.1007/s002530051061
  22. Appl. Microbiol. Biotechnol. v.54 In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococus pluvialis Kobayashi,M. https://doi.org/10.1007/s002530000416
  23. Protein, Nucleic Acid and Enzyme v.46 Algal carotenoid biosynthesis enhanced by active oxygen uner environmental stress Kobayashi,M.
  24. J. Ferment. Bioeng. v.74 Growth and astaxanthin formation of Haematococcus pluvialis in heterotriphic and mixotrophic conditions Kobayashi,M.;T.Kakizono;K.Yamaguchi;N.Nishio;S.Nagai https://doi.org/10.1016/0922-338X(92)90261-R
  25. Plant Pigments Biosynthesis of carotenoids Britton,G.;T.W.Goodwin(ed.)
  26. J. Biol. Chem. v.272 In vitro characterization of astaxanthin biosynthetic enzymes Fraser,P.D.;Y.Miura;N.Misawa https://doi.org/10.1074/jbc.272.10.6128
  27. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.49 Genes and enzymes of carotenoid biosynthesis in plants Cunningham,F.X.;E.Gantt https://doi.org/10.1146/annurev.arplant.49.1.557
  28. Planta v.194 Drought induces oxidative stress in pea plants Moran,J.F.;M.Becana;I.Iturbe-Ormaetxe;S.Frechilla;R.V.Klucas;P.Aparicio-Tejo
  29. Free Rad. Res. Comms. v.8 Plants under drought-stress generate activated oxygen Price,A.H.;N.M.Atherton;G.A.F.Hendry https://doi.org/10.3109/10715768909087973
  30. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.39 Metabolism and physiology of abscisic acid Zeevaart,J.A.D.;R.A.Creelman https://doi.org/10.1146/annurev.pp.39.060188.002255
  31. Bot. Acta v.102 Abscisic acid content of algae under stress Hirsch,R.;W.Hartung;H.Gimmler https://doi.org/10.1111/j.1438-8677.1989.tb00113.x
  32. Plant Cell Environ. v.26 Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid Yoshida,K.;E.Igarashi;M.Mukai;K.Hirata;K.Miyamoto https://doi.org/10.1046/j.1365-3040.2003.00976.x
  33. Physiol. Plant. v.83 The photoprotective role of carotenoids in higher plants Young,A.J. https://doi.org/10.1111/j.1399-3054.1991.tb02490.x
  34. Cytologia v.49 Ultrastructural study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales): I. Some aspects of carotenogenesis Santos,M.F.;J.E.Mesquita https://doi.org/10.1508/cytologia.49.215
  35. Biotechnol. Lett. v.22 Protective role of astaxanthin against UV-B irradiation in the green alga Haematococcus pluvialis Kobayashi,M.;T.Okada https://doi.org/10.1023/A:1005649609839
  36. ACS Sym. Ser. v.637 Biotechnology of astaxanthin production in Phaffia rhodozyma Johnson,E.A.;W.A.Schroeder https://doi.org/10.1021/bk-1996-0637.ch004
  37. Lipids v.33 Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and α-tocopherol in liposomes Fukuzawa,K.;Y.Inokami;A.Tokumura;J.Terao;A.Suzuki https://doi.org/10.1007/s11745-998-0266-y
  38. Fish. Sci. v.62 Carotenoids as singlet oxygen quenchers in marine organisms Simidzu,N.;M.Goto;W.Miki https://doi.org/10.2331/suisan.62.134
  39. Free Radicals in Biology and Medicine(2nd ed.) Halliwell,B.;J.M.C.Gutteridge
  40. J. Immunol. v.130 Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation Bass,D.A.;J.W.Parce;L.R.Dechatelet;P.Szejda;M.C.Seeds;M.Thomas
  41. Physiol. Plant. v.94 Oxidative stress and antioxidant content in Chlorella vulgaris after exposure to ultraviolet-B radiation Malanga,G.;S.Puntarulo https://doi.org/10.1111/j.1399-3054.1995.tb00983.x
  42. J. Phycol. v.33 In vivo measurement of active oxygen production in the brown alga Fucus evanescens using 2',7'-dichlorohydrofluorescein diacetate Collen,J.;I.R.Davison https://doi.org/10.1111/j.0022-3646.1997.00643.x
  43. Eur. J. Biochem. v.223 carotenoid biosynthesis in microorganims and plants Sandmann,G. https://doi.org/10.1111/j.1432-1033.1994.tb18961.x
  44. J. Biotechnol. v.59 Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts Misawa,N.;H.Shimada https://doi.org/10.1016/S0168-1656(97)00154-5
  45. Appl. Microbiol. Biotechnol. v.51 Production of ketocarotenoids by microalgae Margalith,P.Z. https://doi.org/10.1007/s002530051413
  46. Physiol. Plant. v.108 Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response Boussiba,S. https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  47. FEBS Lett. v.500 Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids Schoefs,B.;N.E.Rmiki;J.Rachadi;Y.Lemoine https://doi.org/10.1016/S0014-5793(01)02596-0
  48. Plant Mol. Biol. v.29 Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli Kajiwara,S.;T.Kakizono;T.Saito;K.Kondo;T.Ohtani;N.Nishio;S.Nagai;N.Misawa https://doi.org/10.1007/BF00043657
  49. FEBS Lett. v.364 Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis Lotan,T.;J.Hirschberg https://doi.org/10.1016/0014-5793(95)00368-J
  50. Biochim. Biophys. Acta v.1446 Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation Linden,H. https://doi.org/10.1016/S0167-4781(99)00088-3
  51. J. Biol. Chem. v.276 Ketocarotenoid biosynthesis outside o plastids in the unicellular green alga Haematococcus pluvialis Grunewald,K.;J.Hirschberg;C.Hagen https://doi.org/10.1074/jbc.M006400200
  52. Plant Physiol. v.125 Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis Steinbrenner,J.;H.Linden https://doi.org/10.1104/pp.125.2.810
  53. J. Biol. Chem. v.273 Induction and control of chromoplast-specific carotenoid genes by oxidative stress Bouvier,F.;R.A.Backhaus;B.Camara https://doi.org/10.1074/jbc.273.46.30651
  54. Eur. J. Biochem. v.233 Carotene desaturation is linked to a respiratory redox pathway in Narcissus pseudonarcissus chromoplast membranes: Involvement of a 23-kDa oxygen-evolving-complex-like protein Nievelstein,V.;J.Vandekerckhove;M.H.Tadros;J.V.Lintig;W.Nitschke;P.Beyer https://doi.org/10.1111/j.1432-1033.1995.864_3.x
  55. J. Phycol. v.31 Cytochrome f loss in astaxanthin-accumulating red cells of Haematococcus pluvialis (Chlorophyceae): Comparison of photosynthetic activity, photosynthetic enzymes, and thylakoid membrane polypeptides in red and green cells Tan,S.;F.X.Cunningham;M.Youmans;B.Grabowski;Z.Sun;E.Gantt https://doi.org/10.1111/j.0022-3646.1995.00897.x
  56. Plant Mol. Biol. v.52 Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: Regulation by photosynthetic redox control Steinbrenner,J.;H.Linden https://doi.org/10.1023/A:1023948929665
  57. J. Ferment. Bioeng. v.77 Isolation of resistant mutants against carotenoid biosynthesis inhibitors for a green alga Haematococcus pluvialis, and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers Tjahjono,A.E.;T.Kakizono;Y.Hayama;N.Nishio;S.Nagai https://doi.org/10.1016/0922-338X(94)90003-5
  58. Biotechnol. Lett. v.19 Isolation and characterization of compactin resistant mutants of an astaxanthin synthesizing green alga Haematococcus pluvialis Chumpolkulwong,N.;T.Kakizono;T.Handa;N.Nishio https://doi.org/10.1023/A:1018330329357
  59. World J. Microbiol. Biotechnol. v.17 Studies on Haematococcus pluvialis for improved production of astaxanthin by mutagenesis Tripathi,U.;G.Venkateshwaran;R.Sarada;G.A.Ravishankar https://doi.org/10.1023/A:1016609815405
  60. Biotechnol. Lett. v.25 Screening and characterization of astaxanthinhyperproducing mutants of Haematococcus pluvialis Chen,Y.;D.Li;W.Lu;J.Xing;B.Hui;Y.Han https://doi.org/10.1023/A:1022877703008
  61. J. Ferment. Bioeng. v.75 Formation and regeneration of protoplast from a unicellular green alga Haematococcus pluvialis Tjahjono,A.E.;T.Kakizono;Y.Hayama;S.Nagai https://doi.org/10.1016/0922-338X(93)90115-O
  62. J. Appl. Phycol. v.14 Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis Teng,C.;S.Qin;J.Liu;D.Yu;C.Liang;C.Tseng
  63. Biocatalysis v.1 Improved phycocatlysis of carotene production by flow cytometry and cell sorting Nonomura,A.M.;D.M.Coder https://doi.org/10.3109/10242428808998173
  64. J. Biosci. Bioeng. v.92 Enlarged and astaxanthin-accumulating cyst cells of the green alga Haematococcus pluvialis Kobayashi;M.T.Katsuragi;Y.Tani https://doi.org/10.1263/jbb.92.565
  65. Bio/Technol. v.9 Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting An,G.H.;J.Bielich;R.Auerbach;E.A.Johnson https://doi.org/10.1038/nbt0191-70
  66. Plant Physiol. v.116 Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil Rabbani,S.;P.Beyer;J.von Lintig;P.Hugueney;H.Kleinig https://doi.org/10.1104/pp.116.4.1239
  67. Trends Biotechnol. v.18 Commercial potential for Haematococcus microalgae as a natural source of astaxanthin Lorenz,R.T.;G.R.Cysewski https://doi.org/10.1016/S0167-7799(00)01433-5
  68. J. Med. Food v.6 Safety of an astaxanthin-rich Haematococcus pluvialis algal extract: A randomized clinical trial Spiller,G.A.;A.Dewell https://doi.org/10.1089/109662003765184741
  69. Seibutsu-Kogaku v.80 Astaxanthin production by Haematococcus Kobayashi,M.