DOI QR코드

DOI QR Code

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams

비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화

  • 이두호 (대구대학교 자동차/산업/기계공학부) ;
  • 황우석 (동의대학교 기계공학과)
  • Published : 2003.12.01

Abstract

Length of an unconstrained viscoelastic damping layer on beams is determined to maximizeloss factor using a numerical search method. The fractional derivative model can describe damping characteristics of viscoelastic damping materials accurately, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kelvin[RUK] equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are identified with ambient temperatures and thickness ratios of beam and damping layer by using a finite-difference-based steepest descent method.

Keywords

References

  1. Plunkett. R. and Lee. C. T.. 1970, Length Optimization for Constrained Viscoelastic Layer Damping. The Journal of the Acoustical Society of America. Vol. 48. NO.L pp. 150-161 https://doi.org/10.1121/1.1912112
  2. Lunden. R., 1979, Optimum Distribution of Additive Damping for Vibration Beams. Journal of Sound and Vibration. Vol. 66. No.1. pp. 25-37 https://doi.org/10.1016/0022-460X(79)90598-4
  3. Lifshitz, J. M. and Leibowitz, M., 1987, Optimal Sandwich Beam Design for Maximum Viscoelastic Damping. Int. J. Solids Structures. Vol. 23, No. 7. pp. 1027-1034 https://doi.org/10.1016/0020-7683(87)90094-1
  4. Suweca. W. and Jezequel, L., 1992. Optimal Structural Design with Damping Constraint Limitations. Int. J. for Numer. Meth. In Engng., Vol. 35, pp. 21-35 https://doi.org/10.1002/nme.1620350103
  5. Hajela. P. and Lin. C.Y., 1991, Optimal Design of Viscoelastically Damped Beam Structures. Appl. Mech. Rev., Vol. 44. No.11. pp. S96-S106 https://doi.org/10.1115/1.3121378
  6. 유영훈, 양보석. 1995, '점탄성 제진재를 이용한 비구속형 제진강판의 최적설계에 관한 연구.' 한국소음진동공학회논문집. 제 5 권. 제 4 호. pp. 493-501
  7. Roy. P. K. and Ganesan. N., 1996. Dynamic Studies on Beams with Unconstrained Layer Damping Treatment. Journal of Sound and Vibration. Vol. 195. No.3. pp. 417-427 https://doi.org/10.1006/jsvi.1996.0435
  8. Tropette. P. and Fatemi. J.. 1997. Damping of Beams. Optimal Distribution of Cuts in the Viscoelastic Constrained Layer. Structural Optimization. Vol. 13. pp. 167-171 https://doi.org/10.1007/BF01199236
  9. Nakra, B. C., 1998. Vibration Control in Machines and Structures Using Viscoelastic Damping. Journal of Sound and Vibration. Vol 211, No.3, pp. 449-465 https://doi.org/10.1006/jsvi.1997.1317
  10. Lumsdaine, A. and Scott. R A.. 1998. Shape Optimization of Unconstrained Viscoelastic Layers Using Continuum Finite Elements. Journal of Sound and Vibration. Vol. 216. No.1. pp. 29-52 https://doi.org/10.1006/jsvi.1998.1668
  11. Akanda. A. and Goerchius. G. M., 1999. Representationof Constrained/Unconstrained Layer Damping Treatments in FEA/SEA Vehicle System Models: A Simplified Approach. SAE Paper No. 1999-01-1680
  12. Jones. D. I. G. 2001. Handbook of Viscoelastic Vibration Damping. John Wiley & Sons, New York
  13. Mead. D. J., 2000. Passive Vibration Control. John Wiley & Sons. New York
  14. Nashif. A. D.. Jones. D. I. G. and Henderson. 1. P.. 1985, Vibration Damping. John Wiley & Sons. New York
  15. Sun. C. T. and Lu. Y. P.. 1995. Vibration Damping of Structural Elements. Prentice Hall. Inc., London
  16. Tritz. T., 1996. 'Analysis of Fourparameter Fractional Derivative Model of Real Solid Materials. Journal of Sound and Vibration. Vol. 195, No. 1. pp. 103-115 https://doi.org/10.1006/jsvi.1996.0406
  17. Arora. J. S.. 198. Introduction to optimum design. McGraw-Hill Inc., New York