References
- Arden, L., Lansdorp, P., and De Groot, E., A growth factor for B cell hybridomas produced by human monocytes. Lymphokines, 10, 175-185 (1985)
- Arenzana-Seisdedos, F. and Virelizier, J., Interferons as macrophage activating factors. II. Enhanced secretion of interleukin 1 by lipopolysaccharide-stimulated human monocytes. Eur. J. Immunol., 13, 437-444 (1983) https://doi.org/10.1002/eji.1830130602
- Choriki, M., Freudenberg, M., Calanos, C., Poindron, P., and Bartholeyns, J., Antitumoral effects of lipopolysaccharide, tumor necrosis factor, interferon and activated macrophages: synergism and tissue distribution. Anticancer Res., 9, 1185-1190 (1989)
- Cohn, Z. A., Activation of mononuclear phagocytes: fact, fancy, and future. J. Immunol., 121, 813-816 (1978)
- Davidson, I. W., Sutherland, Z. W., and Lawson, C. J., Purification and properties of an alginate lyase from a marine bacterium. Biochem. J., 159, 707-713 (1976) https://doi.org/10.1042/bj1590707
- Darquy, S. and Sun, A. M., Microencapsulation of parathyroid cells as a bioartificial parathyroid in vitro studies. ASAIO J., 33, 356-358 (1987)
- Decker, T., Lohmann-Matthes, M. L., and Gifford, G. E., Cellassociated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J. Immunol., 138, 957-962 (1987)
- Dinarello, C. A., Interleukin-1. Rev. Infect. Dis., 6, 51-95 (1984) https://doi.org/10.1093/clinids/6.1.51
- Ding, A. H., Nathan, C. F., and Stuehr, D. J., Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol., 141, 2407-2412 (1988)
- Djeraba, A., Bernardet, N., Dambrine, G., and Quere P., Nitric oxide inhibits Marek's disease virus replication but is not the single decisive factor in interferon-gamma-mediated viral inhibition. Virology, 277, 58-65 (2000) https://doi.org/10.1006/viro.2000.0576
- Dullens, H. F. J., De Weger, R. A., Van Der Maas, M., Den Besten, P. J., Vandebriel, R. J., and Den Otter, W., Production of specific macrophage-arming factor precedes cytotoxic T lymphocyte activity in vivo during tumor rejection. Cancer Immunol. Immunother., 30, 28-33 (1989) https://doi.org/10.1007/BF01665027
- El Messaoudi, K., Verheyden, A. M., Thiry, L., Fourez, S., Tasiaux, N., Bollen, A., and Moguilevsky, N., Human recombinant myeloperoxidase antiviral activity on cytomegalovirus. J. Med. Virol., 66, 218-223 (2002) https://doi.org/10.1002/jmv.2132
- Fan, M. Y., Lum, Z. P., Fu, X. W., Levesque, L., and Tai, I. T., Reversal of diabetes in BB rats in transplantation of encapsulated pancreatic islets. Diabetes, 39, 519-522 (1990) https://doi.org/10.2337/diabetes.39.4.519
-
Gao, J. J., Filla, M. B., Fultz, M. J., Vogel, S. N., Russell, S. W., and Murphy, W. J., Autocrine/paracrine IFN-
$\alpha$ /$\beta$ mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J. Immunol., 161, 4803-4810 (1998) - Gautam, S. and Deodhar, S., Generation of tumoricidal effector cells by human C-reactive protein and muramyl tripeptide: a comparative study. J. Biol. Res. Modif., 8, 560-569 (1989)
- Greene, J. J., Double-stranded RNA and its analogs: The prospects and the promise of the first nucleic acid therapeutic agent: In Strangefellow, D. A., Clinical Applications of Interferon and IFN Inducers. Marcel Dekker, New York, pp. 245-268 (1986)
- Hibbs, J. B. Jr., Taintor, R. R., and Vavrin, Z., Macrophage cytotoxicity: role for L-arginine deaminase and imino nitrogen oxidation to nitrite. Science, 235, 473-476 (1987a) https://doi.org/10.1126/science.2432665
- Hibbs, J. B. Jr., Vavrin, Z., and Taintor, R. R., L-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol., 138, 550-565 (1987b)
- Higuchi, M., Higashi, N., Taki, H., and Osawa, T., Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol., 144, 1425-1431 (1990)
- Iizima-Mizui, N,, Fujihara, M., Himeno, J., Komiyama, K., Umezawa, I., and Namuno T. Antitumor activity of polysacchride fraction from the brown seaweed sargassum kjellmanianum. Kitasato, Arch. Exp. Med., 58, 59-71 (1985)
- Keller, R., Keist, R., and Frei, K., Lymphokines and bacteria that induce tumoricidal activity, trigger a different secretory response in macrophages. Eur. J. Immunol., 20, 695-698 (1990) https://doi.org/10.1002/eji.1830200334
- Mavier, P. and Edgington, T. S., Human monocyte-mediated tumor cytotoxicity. I. Demonstration of an oxygen-dependent myeloperoxidase-independent mechanism. J. Immunol., 132, 1980-1986 (1984)
- Miner, K. M., Klostergaard, J., Granger, G. A., and Nicolson, G. L., Differences in cytotoxic effects of activated murine peritoneal macrophages and J774 monocytic cells on metastatic variants of B16 melanoma. J. Natl. Cancer Inst., 70, 717-724 (1983)
- Miner, K. M. and Nicolson, G. L., Differences in the sensitivities of murine metastatic lymphoma/lymphosarcoma variants to macrophage-mediated cytolysis and/or cytostasis. Cancer Res., 43, 2063-2067 (1983)
- Morahan, P. S., Interactions of herpesviruses with mononuclear phagocytes. In Rouse, B. T., Lopez, C., Immunobiology of herpes simplex virus infection. CRC Press, Boca Raton, pp. 71-89 (1984)
- Morahan, P. S., Connor, J. R., and Leary, K. R., Viruses, and the versatile macrophage. Br. Med. Bull., 41, 15-21 (1985) https://doi.org/10.1093/oxfordjournals.bmb.a072017
- Otterle, M., Ostgaard, K., Skjak-Braek, G., Smidsrod, O., and Soon-Shiong, P., Induction of cytokine production from human monocytes stimulated by alginate. J. Immunother., 10, 286-291 (1991) https://doi.org/10.1097/00002371-199108000-00007
- Paulnock, D. M. and Lambert, L. E., Identification and characterization of monoclonal antibodies specific for macrophages at intermediate stages in the tumoricidal activation pathway. J. Immunol., 144, 765-773 (1988)
- Proietti, E., Gessani, S., Belardelli, F., and Gresser, I., Mouse peritoneal cells confer an antiviral state on mouse cell monolayers: role of interferon. J. Virol., 57, 456-463 (1986)
- Pyo, S., Gangemi, J. D., Ghaffar, A., and Mayer, E. P., Poly I:Cinduced anti-herpes simplex virus type 1 activity in inflammatory macrophages is mediated by induction of interferonbeta. J. Leukoc. Biol., 50, 479-487 (1991) https://doi.org/10.1002/jlb.50.5.479
- Pyo, S., The mechanism of poly I: C-induced antiviral activity in peritoneal macrophage. Arch. Pharm. Res., 17, 93-99 (1994) https://doi.org/10.1007/BF02974230
- Rager-Zisman, B., Kunkel, M., Tanaka, Y., and Bloom, B. R., Role of macrophage oxidative metabolism in resistance to vesicular stomatitis virus infection. Infect. Immun., 36, 1229-1237 (1982)
- Remels, L., Fransen, L., Huygen, K., and De Baetselier, P., Poly I:C activated macrophages are tumoricidal for TNF-alpharesistant 3LL tumor cells. J. Immunol., 144, 4477-4486 (1990)
- Saiki, I. and Fidler, I. J., Synergistic activation of recombinant mouse interferon-and muramyl dipeptide of tumoricidal properties in mouse peritoneal macrophages. J. Immunol., 135, 684-688 (1984)
- Seljelid, R., Figenschau, Y., Bogwald, J., Rasmussen, L. T., and Austgulen, R., Evidence that tumor necrosis induced by aminated beta 1-3D polyglucose is mediated by a concerted action of local and systemic cytokines. Scand. J. Immunol., 30, 687-694 (1989) https://doi.org/10.1111/j.1365-3083.1989.tb02477.x
- Sharon, N., Shoham, J., and Passwell, J. H., Enhancement of human monocyte cytotoxicity by both interferon-gamma and -beta and comparison to other stimuli. Int. J. Immunopharmacol., 11, 743-749 (1989) https://doi.org/10.1016/0192-0561(89)90128-8
- Sit, M. F., Tenney, D. J., Rothstein, J. L., and Morahan, P. S., Effect of macrophage activation on resistance of mouse peritoneal macrophages to infection with herpes simplex virus types 1 and 2. J. Gen. Virol., 69, 1999-2010 (1988) https://doi.org/10.1099/0022-1317-69-8-1999
- Son, E. H., Moon, E. Y., Rhee, D. K., and Pyo, S., Stimulation of various functions in murine peritoneal macrophages by high mannuronic acid-containing alginate (HMA) exposure in vivo. Int. Immunopharmacol., 1, 147-154 (2001) https://doi.org/10.1016/S1567-5769(00)00012-6
- Soon-Shiong, P., Henitz, R. E., Merideth, N., Yao, Q. X., and Zheng, T., Insulin independence in a type I diabetic patient after encapsulated islet transplantation. Lancet, 343, 950-951 (1994) https://doi.org/10.1016/S0140-6736(94)90067-1
- Stuehr, D. J. and Marletta, M. A., Synthesis of nitrite and nitrate in macrophage cell lines. Cancer Res., 47, 5590-5594 (1987)
- Takahashi, K., Watanuki, Y., Yamazaki, M., and Abe, S., Local induction of a cytotoxic factor in a murine tumor by systemic administration of an antitumor polysaccharide, MGA. Br. J. Cancer., 57, 170-173 (1988) https://doi.org/10.1038/bjc.1988.35
- Tze, W. J. and Tai, J. Biocompatibility and immunological studies of microencapsulation with cross-linked alginate capsules. Transplantation, 33, 563-564 (1982) https://doi.org/10.1097/00007890-198205000-00022
- Tsujimoto, M., Feinman, R., and Vilcek, J., Differential effects of type I IFN and IFN-gamma on the binding of tumor necrosis factor to receptors in two human cell lines. J. Immunol., 137, 2272-2276 (1986)
- Verstovsek, S., Maccubbin, D., and Mihich, E., Tumoricidal activation of murine resident peritoneal macrophage by interleukin 2 and tumor necrosis factor. Cancer Res., 52, 3880-3885 (1992)
- Wong, G. H. and Goeddel, D. V., Tumour necrosis factors alpha and beta inhibit virus replication and synergize with interferons. Nature, 323, 819-822 (1986) https://doi.org/10.1038/323819a0