The Effect of Residual Stress on Magnetoresistance in GMR Head Multilayers

자기기록 MR 헤드 용 다층박막의 자기저항에 미치는 잔류응력 효과

  • Hwang, Do-Guwn (Department of Computer and Electronic Physics, Sangji University)
  • 황도근 (상지대학교 이공과대학 컴퓨터전자물리학과)
  • Published : 2003.08.30

Abstract

Giant magnetoresistance(GMR) NiO multilayer, which has been used to reading head of highly dense magnetic recording, was fabricated, and oxidized in an air during 80 days to study the dependence of magnetoresistance properties on residual stress in the interfaces. The magnetoresistance ratio and the exchange biasing $field(H_{ex})$ of $NiO(60nm)/Ni_{81}Fe_{19}(5nm)/Co(0.7nm)/Cu(2nm)/Co(0.7nm)/Ni_{81}Fe_{19}(7nm)$ spin valves were increased from 4.9% to 7.3%, and 110 Oe to 170 Oe after natural oxidation in the atmosphere for 80 days, respectively. The sheet resistivity ${\rho}$ decreased from $28{\mu}{\Omega}m$ to $17{\mu}{\Omega}m$, but ${\Delta}p$ did not almost change after the oxidation. Therefore, the increase of MR ratio is due to the decrease in the sheet resistivity. the reduced resistance may result from the increase in the reflection of conduction electrons at the oxidized top surface. Also, the increase in the exchange biasing field is originated from the reduction of residual stress at the interface of $NiO/Ni_{81}Fe_{19}$ according as the aging time increases.

초고밀도 자기기록 reading head로 사용되고 있는 거대자기저항(GMR, Giant Magnetoresistance) NiO 다층박막을 제작하고 이를 공기중에서 80 일간 자연산화시킨후, 형성된 산화층과 잔류응력 변화에 따른 NiO 스핀밸브 박막의 자기저항 특성을 연구하였다. $NiO(60nm)/Ni_{81}Fe_{19}(5nm)/Co(0.7nm)/Cu(2nm)/Co(0.7nm)/Ni_{81}Fe_{19}(7nm)$의 구조를 갖는 다층박막을 공기중에서 약 80일간 자연산화 시켰을 때, 자기저항비(MR)와 교환결합력$(H_{ex})$이 각각 4.9%와 110 Oe에서 7.3%와 170 Oe로 증가하였다. 이때, 스핀밸브박막의 비저항(P) 값은 $28{\mu}{\Omega}m$로 감소하였지만 박막의 비저항 값의 변화량$({\Delta}p)$는 크기변화가 거의 없는 것을 알 수 있었다. 그러므로, 자기저항비의 증가는 aging시간에 따른 비저항 값의 감소에 기인한 것으로 생각되며, 저항의 감소는 표면산화에 따라 전도전자의 반사율증가에 의한 것으로 사료된다. 또한 교환결합력의 증가는 반강자성체/자성체 박막사이 계면에서 발생한 잔류응력이 aging시간이 경과함에 따라 감소하여 특성이 강화된 것으로 생각된다.

Keywords

References

  1. B. Dieny, 'Giant magnetoresistance in spinvalve multilayers,' Journal of Magnetism and Magnetic Materials. Vol. 136, pp. 335-359, (1994) https://doi.org/10.1016/0304-8853(94)00356-4
  2. J. M. Daughton, 'Magnetoresistive memory technology,' Thin Solid Films, Vol. 216, pp. 162-168, (1992) https://doi.org/10.1016/0040-6090(92)90888-I
  3. J. M. Daughton and Y. J. Chen, ' Magneto resistive head design using spin-valve multilayers,' IEEE Transaction on Magnetism. Vol. 29, pp. 2705, (1993) https://doi.org/10.1109/20.280936
  4. B. Dieny, V. S. Speriosu, S. Metin, S. S. Parkin, B. A. Gurney, P. Baumgart, and D. R. Wilhoit, 'Magnetotransport properties of magnetically soft spin-valve structures,' Journal of Applied Physics Vol. 69, pp. 4774-4779, (1991)
  5. Th. G. S. M. Rijks, W. J. M. de Jonge, W. Folkerts, J. C. S. Kools, and R. Coehoorn, 'Magnetoresistance in Ni$_{80}$Fe$_{20}$/Cu/Ni$_{80}$Fe$_{20}$/ Fe$_{50}$Mn$_{50}$ spin valves with low coercivity and ultrahigh sensitivity,' Applied Physics Letters Vol. 65, pp. 916-919, (1994)
  6. K. Hoshino, S. Noguchi, R. Nakatani, and Y. Sugita, 'Magnetoresistance and Interlayer Exchange Coupling between Magnetic Layers in Fe-Mn/Ni-Fe-Co/Cu/Ni-Fe-Co Multilayers,' Japan Journal of Applied Physics, Vol. 33, pp. 1327-1331, (1994)
  7. S. Noguchi, R. Nakatani, K. Hoshino, and Y. Sugita, 'Magnetoresistance Effects in Spin-Valve Multilayers Including Three Ni-Fe-Co Layers,' Japan Journal of Applied Physics, Vol. 33, pp. 5734-5739, (1994)
  8. T. C. Anthony, J. A. Brug, and S. Zhang, 'Magnetoresistance studies of NiCoO exchange biased spin-valve structures,' IEEE Transaction on Magnetism. Vol. 30, pp. 3819-3821 (1994)
  9. C. M. Hernandez and S. Krishnaswamy, 'Laser ultrasonic characterization of residual stresses in thin films,' AlP conference Proceeding, Vol. 657 Issue 1, pp. 1504-1508, (2002)
  10. C. M. Hernandez, T. W. Murray and S. Krishnaswamv, 'Photoacoustic characterization of the mechanical properties of thin films,' Applied Physics Letters, Vol. 80, pp. 691-194, (2002)