Long Range Cylindrically Guided Ultrasonic Wave Technique for Inspection

  • Published : 2003.08.30

Abstract

In this paper, a review of the current status, on the use of long range cylindrically guided wave modes, and their interaction with cracks and corrosion damage in pipe-like structures will be discussed. Applications of cylindrically guided ultrasonic wave modes have been developed for inspection of corrosion damage in pipelines at chemical plants, flow-accelerated corrosion damage (wall thinning) in feedwater piping, and circumferential stress corrosion cracks in PWR steam generator tubes. It has been demonstrated that this inspection technique can be employed on a variety of piping geometries (diameters from 1 in. to 3 ft, and wall thickness from 0.1 to 6 in.) and a propagation distance of 100 meters or more is sometimes feasible. This technique can also be used in the inspection of inaccessible or buried regions of pipes and tubes.

Keywords

References

  1. T. R. Meeker and A. H. Meitzler, 'Guided Wave propagation Elongated Cylinders and Plates,' Physical acoustics, Vol. 1 Part A, pp. 111-167, (1964)
  2. Zemmanek J. JR., 'An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder,' The JASA, Vol. 52, No. 1 (part 2), pp. 265-283, (1972)
  3. W. Moher and P. Holler, 'On Inspection of Thin Walled Tubes for Transverse and longitudinal Flaws by Guided Ultrasonic Waves,' IEEE Transactions on Sonics and Ultrasonics, Vol. SU-23, pp. 369-374, (1976)
  4. D. C. Gazis, 'Three Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders - I. Analytical Foundation,' Journal of the Acoustical Society of America, Vol. 31, No.5, pp. 568-573, (1959a) https://doi.org/10.1121/1.1907753
  5. D. C. Gazis, 'Three Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders II. Numerical Results,' Journal of the Acoustical Society of America, Vol. 31, No.5, pp. 573-578, (1959a) https://doi.org/10.1121/1.1907754
  6. M. G. Silk and K. F Bainton, 'The Propagation Metal Tubing of Ultrasonic Wave Mode Equivalent to Lamb Waves,' Ultrasonics, Vol. 17, pp. 11-19, (1979)
  7. D. N. Alleyne, and P. Cawley, 'The interaction of Lamb Waves with Defects,' IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 39, No.3, pp. 381-397, (1992) https://doi.org/10.1109/58.143172
  8. D. N. Alleyne, M. J. S. Lowe and P. Cawley, 'The reflection of guided waves from circumferential notches in pipes,' ASME J. Applied Mechanics, Vol. 65, pp. 635-641, (1998)
  9. M. J. S. Lowe, D. N. Alleyne and P. Cawley, 'The mode conversion of a guided wave by a part-circumferential notch in a pipe,' ASME J. Applied Mechanics, Vol. 65, pp. 649-656, (1998)
  10. J. J. Ditri, 'Phase and energy velocities of cylindrically crested guided waves', J. Acoust. Soc. Am., Vol. 97, No.1, pp. 98-107, (January 1995)
  11. A. Pilarski, J. L. Rose and K. Balasubramaniam, 'On A Plate,Surface Wave Mode Selection Criteria for Ultrasonic Evaluation in Layered Structures', J. of Acoust. Soc. of A., Supp!. 1, Vol 82, S21-18, (1987)
  12. D. N. Alleyne and P. Cawley, 'Optimization of Lamb Wave inspection techniques,' NDT&E, Vol. 25, No.1, pp. 11-22, (1992) https://doi.org/10.1016/0963-8695(92)90003-Y
  13. B. Pavlakovic, and M. Lowe, Disperse Software Version 2.0, Imperial College, University of London, (1997)
  14. D. N. Alleyne and P. Cawley, 'The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers,' J. of Nondestructive Evaluation, Vol. 15, No.1, pp. 11-20, (1996) https://doi.org/10.1007/BF00733822
  15. J. L. Rose, et. al., NDT&E International, Vol. 27, pp. 307-330, (1994) https://doi.org/10.1016/0963-8695(94)90211-9
  16. W. Bottger, H. Sclmeider and W. Weingarten, 'Prototype EMAT system for tube inspection with guided ultrasonic waves,' Nuclear Eng. and Design, Vol. 102, pp. 356-376, (1987)
  17. http://www.swri.org/3 pubs/ttoday/fall00/technics.htm
  18. D. N. Alleyne and P. Cawley, 'The long range detection of corrosion in pipes using Lamb waves,' Vol. 14, Rev. of prog in Quant. NDE, N.Y., Plenum Press, pp. 2075-2080, (1995)
  19. D. N. Alleyne, et. al.,' The Lamb Wave Inspection of Chemical Plant Pipework,' Proc. 14th World Conf. On Non-destr. Testing (14th WCNDT), New Delhi, India, pp. 2303-2306, (Dec. 8-13, 1996)
  20. D. N. Alleyne, P. Cawley, A. M. Lank, and P. J. Mudge, 'The Lamb Wave Inspection of Chemical Plant Pipework,' Review of Progress in Quantitative NDE, Vol. 16, DO Thompson and DE Chimenti (eds) , Plenum Press, New York, pp. 1269-1276, (1997)
  21. J. L. Rose, Dale J. and J Spanner, Jr. 'Ultrasonic Guided Wave NDE for Piping,' Material Evaluation November (1996)
  22. J. L. Rose, J. J. Ditri, A. Pilarski, K. Rajana, and F. T. Carr, 'A guided wave inspection technique for nuclear steam generator tubing,' NDT & E International, Vol. 27, pp. 307-330, (1994)
  23. M. D. Seale, B. T. Smith, W. H. Prosser and J. E. Masters, 'Lamb Wave Response of Fatigued Composite Samples,' Review of Progress in Quantitative Nondestructive Evaluation, Brunswick Maine, pp. 1261-1266, (August, 1993)
  24. R. Sullivan, Balasubramaniam, K, and A. G. Bennett, 'Plate wave flow patterns for ply orientation imaging in fiber reinforced composites,' Materials Evaluation, Vol. 54, No.4, April, PP. 518-523. (1996)
  25. D. N. Alleyne, B. Pavlakovic, M. J. S. Lowe, and P. Cawley,' Rapid Long range Inspection of Chemical Plant Pipework Using Guided Waves,' 15th World Conference on Nondestructive Testing, Roma (Italy), (15-21 October 2000)