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Virtual Reality Presentation of Moment Tensor Analysis by SiGMA

Masayasu Ohtsu* ' and Mitsuhiro Shigeishi**

Abstract Nucleation of a crack is readily detected by acoustic emission (AE) method. One powerful technique for
AE waveform analysis has been developed as SiIGMA (Simplified Greens functions for Moment tensor Analysis),

as crack kinematics of locations, types and orientations are quantitatively determined. Because these kinematical

outcomes are obtained as three-dimensional (3-D) locations and vectors, 3-D visualization is definitely desirable.
To this end, the visualization system has been developed by using VRML (Virtual Reality Modeling Language).

As an application, failure process of a reinforced concrete beam is discussed.
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1. Introduction

The generalized theory of acoustic emission
(AE) has been established on the basis of
elastodynamics (Ohtsu and Ono, 1984). Thus, it
is clarified that AE waves are elastic waves due
to dynamic dislocation in a solid. Theoretical
treatment of AE in concrete was studied as
elastic waves in a homogeneous medium (Ohtsu,
1982). The results were remarkably successful,
whereas concrete is not homogeneous but
heterogeneous. This is because elastodynamic
properties of material constituents are physically
dependent on  the relation between the
wavelengths and the characteristic dimensions of
heterogeneity. In the case that the wavelengths
are even larger than the sizes of heterogeneous
effect

inconsequent. This is the case of massive solids

inclusions, the of heterogeneity is

such as concrete and rock, if the sizes of
specimens are large enough compared with the
wavelengths.

Theoretical treatment of AE waves leads to
the moment tensor analysis for source kinematics
(Kim and Sachse, 1984) and the deconvolution
analysis for kinetics (Hsu and Hardy, 1978). In
the former paper, only diagonal components of
the moment tensor were assumed to characterize
cracking mechanisms of glass due to indentation.
Mathematically,  the  presence  of  tensor
components is not actually associated with the
type of the crack, but substantially related with
the coordinate system. Although the crack
orientations are often assumed as parallel to the
coordinate system (Saito, Takemoto, Suzuki and
Ono, 1998), they are generally inclined to the
coordinate system mostly because of the
configuration of the specimen. As a result, the
presence of all the components is consequent
whether the type of the crack is of tensile or of
shear.

In order to perform the moment tensor
powerful

analysis, one technique for AE

waveform analysis has been developed as

Received April 19, 2003, Accepted June 5, 2003. * Graduate School of Science and Technology, Kumamoto
University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan, ** Department of Civil Engineering and Architecture,

Kumamoto Univ., T Corresponding author: ohtsu@gpo.kumamoto-u.ac.jp



190 Masayasu Ohtsu and Mitsuhiro Shigeishi

SiGMA  (Simplified Green's functions for
Moment tensor Analysis) (Ohtsu, 1991). Crack
kinematics on locations, types and orientations
are quantitatively determined. Because these
kinematical outcomes are obtained as
three-dimensional (3-D) locations and vectors,
3-D visualization of results is desirable. To this
end, the procedure has been
developed by wusing VRML (Virtual

Modeling Language).

visualization

Reality

Theoretical Background

An elastodynamic solution of wave motions

u(x,t) is mathematically represented as,

udx,t) = s[Gu(X,¥,t)*6(y,0)- Tyt *uy,H)]dS

M

where u(x,t) and u(y,t) are displacements, and
t(y,t) are tractions. The asterisk * represents the
convolution integral in time. Gi(x,y,t) are
Green's functions and Tu(x,y,t) are the associated

tractions with Green's functions,
Tik(X,Y»t) = Gipaq(xayﬂ) CP({jk n; (2)

Here Cpqx are the elastic constants, and Gipgq
(x,y,t) are the spatial derivatives of Green's
functions as they imply 0 Gip(x,y,t)/ 0 Xq. n is the
unit normal vector to the boundary surface S.
Physical meaning of Green's function is readily
derived, as applying one force, t(y,t) = f(y,t), at
only one point y on the boundary S and eq. (1)

is converted as,
ui(x.t) = Gii(x,y,H)*fi(y,t) (3)

Thus,  Gi(x,y,0)
displacement ui(x,t) in the x; direction at point x

results in  the dynamic
due to the force fi(y,t) in the x; direction at point
v. Because Green's functions are dependent on

not only material properties but also on

configuration of the medium, they have to be
computed numerically. Only for an infinite space,
analytical solutions are known. Semi-analytical
solutions were already reported in a half space
(Ohtsu and Ono, 1984) and in an infinite plate
(Pao and Ceranoglu, 1981). For a finite body,
numerical solutions of Green's functions were
reported by applying the finite element method
(Hamstad, O'Gallagher and Gary, 1999).

A famous experiment of pencil-lead break
(Hsu and Hardy, 1978) is
represented by eq. (3). A pencil-lead break is

mathematically

known to generate Heaviside's step-function
force, H(t)ej(y), where e(y) is the unit direction
vector at point y. Since the convolution with the
step function leads to the integration in time, eq.

(3) becomes,
pi(x,t) = J Gi(x.y,Dey) dt 4

Here pi(x,t) is the detected waveform by the

displacement  sensor.  Accordingly,  Green's
function of an arbitrary specimen, Gi(x,y), can

be empirically obtained from,
Gi(xy,t) = dpi(x,0)/dt (5)

It is noted that the orientation of AE sensor
sensitivity is parallel to the x;-direction and the
force due to pencil-lead break is released in the
xj-direction.

Although some attempts were carried out to
apply these Green's functions to the source
characterization of AE, eq. (3) cannot be applied
to AE waves due to cracking. In seismology,
fault (cracking) mechanisms are represented by
such equivalent forces as dipole and couple
forces. The dipole forces are known as two
forces of the same magnitude and the opposite
directions on the coincident straight line. The
parallel  and

couple  forces are  two

opposite-direction ~ forces  with  infinitesimal
distance. In order to combine these forces with

empirical Green's functions, the pencil-lead break
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must be generated in the directions that are
associated with the orientations of these forces. If
the dipole forces or the couple forces are applied
in the two opposite directions at the same
location, actually resultant Green's functions lead
to no motions.

In order to model a crack as an AE source,
the boundary surface S in eq. (1) is replaced by

internal surface F of a crack

surface. To
introduce the discontinuity of displacements
(dislocation), virtual two surfaces F* and F arc
considered as shown in Fig. 1. Before a crack is
nucleated, these two surfaces make a coincident
motion. Due to cracking, the discontinuity of
displacement b(y,t) is nucleated between the two
surfaces and denoted by using superscripts + and

- on surface F' and F,
biy.t) = u'(y.) - w(y.) (6)

Vector b(y,t) is called the dislocation and is
identical to Burgers vector in crystallography.
Setting t(y,t) = 0 on the surface F, eq. (1) is
rewritten,

w(xt) = [ - Ta (.0 (yv.0]dF
+.Jﬂ Ff[ - Tki_(x7yat)*ui“(y>t)]dF

(7

where Ty' and T contain the normal vector n”
and n’, respectively. Assuming n = n = -n’, and
F=F,

w(xt) = - [Ty, - (y,0])dF
1l - TGy .0*ui(y,nldF "
(8)

f I“Tki(xayat)* [ uir' (y,t)-u{(y,t)]dF

= [ FTua(xy y*bi(y,t)dF

Comparing eq. (3) with eq. (8), it s
understandable that Green's functions empirically
obtained from the pencil-lead break can not be
applied to AE waves due to cracking. Based on
eq. (2), eq. (8) is converted as,

X3

l

Crack (dislocation) surfaces F+ and F-.

X2

Xi

Fig. 1

u(x,t) = [ ¢ Tu(xy,0*bi(y,t) dF

I Gipg(X,y,H) Cogij m*bi(y,HdF
Gip.g(X,¥,0*S(t) Cpqii mili / ¢ b(y,H)dF
= Gipg(XY-0*S) Cpgy nliDV

fl

)

where 1 is the unit direction vector and S(t) is
the source-time function of crack motion. DV is
the crack volume. It is noted that the amplitude
of AE wave, u(x,t), is explicitly associated with
the crack volume, neither simply with the crack
area nor with crack opening. This implies that
some attempts to determine the crack area or the
magnitude slip (Enoki, Kishi and
Kohara, 1986: Dai, Labuz and Carvalho, 2000)

were not rational, because only a disk-shaped

of shear

crack was taken into account. According to the
simulation analysis (Ohtsu, Yuyama and Imanaka,
1987), the
penny-shaped crack was more than 30% different
from that of the disk-shaped. Equation (9) is the

crack volume estimated as the

theoretical representation of AE wave due to
cracking and can be available for simulation
analysis (Ohtsu, 1982).

SiGMA Analysis

Since eq. (9) is fairly complicated and
contains two vectors | and n, moment tensor My,

is introduced for an inverse problem,

Mpq = Cqullknl bv (10)



192 Masayasu Ohtsu and Mitsuhiro Shigeishi

Then, eq. (9) is rewritten as,

u(X,) = Grpa(X,¥,1) Mpg*S(t) (11)

According to eq. (10), the moment tensor, Mpq,
is defined by the product of the elastic constants
[N/m’] and the crack volume [m’], which leads
to the moment of physical unit [Nm]. In the case
of an isotropic material,

Mpq = lline dpq + m(lng + lynp)DV (12)

where | and m are Lame's elastic constants.
Originally, the seismic moment, mbDF [Nm], wa
defined as the product of shear modulus m
[N/m’], shear displacement b [m], and area of
fault DF [mz]. Setting 1 = (1, 0, 0), n = (0, 1, 0)
(1 is perpendicular to n) and DV = bDF in eq
(12), one component M), is obtained as 2mbDF
which is obviously equivalent to the seismic
moment. This is the reason why the tensor is
named as the moment tensor. Equation (12) leads
to the fact that the moment tensor is comparable
to a stress due to crack nucleation, as a
symmetric second-order tensor as shown in Fig. 2.

Mathematically, such equivalent forces as
the dipole forces and the double-couple forces
correspond to particular components of the stress
in Fig. 2. Normal components of the moment
tensor are identical to the dipole forces, while
couple forces correspond to tangential (shear)
components. The concept of the equivalent forces

is so misleading that the nucleation of a tensile

-

crack motion

= -k

crack is represented by only a pair of dipole
forces. In the case of a pure tensile crack, a
scalar product lLng = 1. Since all diagonal
components contain the scalar product as given
in eq. (12), the tensile crack should be modeled
by three normal components (three pairs of
dipole forces). In contrast, couple forces
correspond to off-diagonal components in eq.
(12). Since the moment tensor is symmetric,
double-couple forces are rational.

For an inverse problem of eq. (11), the
of Green's functions are

spatial ~ derivatives

inevitably Accordingly, numerical
solutions were obtained by FDM (Enoki, Kishi
and Kohara, 1986) and by FEM (Hamstad,
O'Gallagher and Gary, 1999). These solutions,

processor  for

required.

however, need a  vector
computation, and are not readily applicable to
processing a large amount of AE waves. Based
on the far-field term of P-wave, a simplified
procedure has been developed, which is suitable
for a PC-based processor and robust in
computation. The procedure is now implemented
as a SiGMA (Simplified Green's functions for
taking

account of only P wave motion of the far field

Moment tensor Analysis) code. By
(I/R term) of Green's function in an infinite
space, the displacement Ui(x,t) of P-wave motion

is obtained from eq. (11) as,

Uixt) = [-1@pv)l( rinpry/R)[AS(0)/dt] Mpq

(13)

I~

equivalent tensor
components

Fig. 2 Modeling crack motion by the moment tensor
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Here p  is the density of material and v, is the
velocity of P-wave. R is the distance between the
source y and the observation point x, of which
directional cosine is r = (11, 12, r3). Considering
the effect of reflection at the surface and
neglecting the source-time function, the amplitude

A(x) of the first motion is represented as,
A(X) = [Cs Ref(t,r)/R] T Mij T (14)

where C; is the calibration coefficient including
material constants in eq. (13) and t is the
direction of the sensor sensitivity. Ref(t,r) is the
reflection coefficient at the observation location
x. In the relative moment tensor analysis (Dahm,
1996), this

consideration, because the effect of the sensor

coefficient is not taken into

locations is compensated. Since the moment
tensor is symmetric, the number of independent
to be Thus,
multi-channel observation of the first motions at

unknowns M;; solved is six.
more than six channels is required to determine
the moment tensor components.

Displaying AE waveform on CRT screen,
two parameters of the arrival time (P1) and the
amplitude of the first motion (P2) in Fig. 3 are
determined. In the location procedure, source
location y is determined from the arrival time
differences. Then, distance R and its direction
vector r are determined. The amplitudes of the
first motions at more than 6 channels are
substituted into eq. (14), and the components of
the moment tensor M; are determined. Since
the SIGMA code requires only relative values of
the moment tensor components, the relative
calibration of the sensors is sufficient. Then, the
classification of a crack is performed by the
eigenvalue analysis of the moment tensor. Setting
the ratio of the maximum shear contribution as
X, three eigenvalues for the shear crack become
X, 0, -X. Likewise, the ratio of the maximum
deviatoric tensile component is set as Y and the

isotropic tensile as Z. It is assumed that the

principal axes of the shear crack are identical to
those of the tensile crack. Then, the eigenvalues
of the moment tensor for a general case are
represented by the combination of the shear
crack and the tensile crack. Because relative
values are determined in the SiGMA, three

eigenvalues are normalized and decomposed,

1.0 = X+ Y +Z

the intermediate eigenvalue/the maximum

eigenvalue = 0 -Y2+Z (15)

the minimum eigenvalue/the maximum
eigenvalue = X -Y2+Z

where X, Y, and Z denote the shear ratio, the
deviatoric tensile ratio, and the isotropic tensile
ratio, respectively. In the present SiGMA code,
AE sources of which the shear ratios are less
than 40% are classified into tensile cracks. The
sources of X > 60% are classified into shear
cracks. For X values between 40% and 60%,
cracks are referred to as mixed mode. In the
eigenvalue analysis, three eigenvectors el, e2,
and e3,

el =1+n
e2=1xn 16)
e3=1-n

are also determined. Vectors 1 and n, which are

interchangeable, are recovered from eq. (16).

1.0

0.5
T
ro
I
~
-
s

Amplitude {voits)
0.0

-1.0 -0.5

0 128 256 384 512
Time (usec)

Fig. 3 Detected AE wave and two parameters
P1 and P2
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Three-Dimensional Visualization by VRML

Visualization procedure has been developed
by using VRML (Virtual Reality Modeling
Language). By applying a conventional SiGMA
code, analytical results for one AE event are
listed in Table 1. From the top, event number,
moment tensor components and the location of
AE source in the Cartesian coordinates are
denoted. Following normalized eigenvalues, three
and X (Shear), Y(CLVD) and
ratios are Here,

eigenvectors
Z(Mean)
component Y is referred to as a compensated
linear-vector dipole (CLVD) after Knopoff and
Randall (1970). At the bottom line, crack motion

vector 1 and crack normal vector m are shown,

given. deviatoric

which are interchangeable.

Table 1 Listed results of SIGMA analysis

] Event Humber : 25

[} Moment Tenme Solution
et R e
04526 01073 0.0543

0.1151 0.5543
1.0000

AR

i1 Seurce Locativn Solution
>4 ¥ 4
0DiE 0029 ©Of2

1 Eigen Valuenk VectorzSolution

Eigen Value ¥ 10050 -0.0865 -0.3505
Eigen Yector X | -0.0014 0.3308 09437
Eigen Yeotor ¥} -0.43% -0.8506 -D2375
Eigen Vestor Z 1 -G501t Q4088 01446

Compositicn Ratio of Eigen ¥alue (%)
Shear: 30.40 | CLVD: 5216 | Mean: 17.43

-3 Crack Motion & Crack Surface Normal Directiona
X ¥ z
Motion -0.443 0522 0729
Bormsl §.440 0244 D364

These data are, for example, currently
plotted as shown in Fig. 4. AE events are
displayed at their locations with symbols. A
tensile crack is denoted by arrow symbol, of
which direction is identical to that of crack
opening. A shear crack is denoted by cross

symbol, of which two directions correspond to

the two vectors 1 and n. As can be seen,
classification of cracks is readily made, whereas
crack orientation is not easily recognized. This is
because two-dimensional plotting is adopted and
results are inherently suitable for three-
dimensional visualization. In this respect, VRML
has been introduced. Crack modes of tensile,
mixed-mode and shear are given in Fig. 5. Here,
an arrow vector indicates the crack motion
vector, and a circular plate corresponds to the
crack surface, which is perpendicular to the crack

normal vector.

Fig. 4 Results plotted in SIGMA analysis

(a) tensile crack

(b) shear crack

(c) mixed-mode

Fig. 5 3-D display models for tensile, shear and
mixed—-mode cracks
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Fig. 6 Specimen and sensor array

Experimental Results and Discussion

Experiments were conducted by using
reinforced concrete beams of dimensions 10 cm x
10 cm x 40 cm. One rebar of 10 mm diameter was
arranged at 30 mm cover-thickness. Compressive
strength of concrete was 33.4 MPa at 28 days.
Modulus of elasticity and the velocity of P wave
were 24 GPa and 3140 m/s, respectively. Six AE
sensors were attached to the specimen. The
locations of sensors and the configuration of a
reinforced concrete beam are shown in Fig. 6.

The specimen was loaded as shown in
Fig. 7. Bending failure of the reinforced concrete
beam was generated. Without reinforcement,
concrete beams suddenly break into two pieces
when the stress at the bottom side reaches the
tensile strength. Sudden crack propagation from
the bottom to the top is prevented with
reinforcement. As a result, failure process is
visually divided into several stages.

Tensile cracks are generated first at the bottom
region as bending cracks. Then, delamination
between the concrete and the reinforcement

loadmg plate ﬂ

" __roller

50T 100 100 T Ioo TS

? AE sensor
* 400

{mm)

Fig. 7 Experimental set-up

occurs. Along with this failure, bending cracks
grow further. The tips of cracks extend upward,
penetrating into the compressive zone of the
upper half. The cracks may stop at this stage due
to compression, and the beam reaches final
failure of diagonal-shear failure or concrete

crashing at the upper half.

o e
| ST S————

(a) First stage

(b) Second stage

(c) Third stage

Fig. 8 Results of SIGMA analysis on the beginning
three stages
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3-D visualization of SiGMA analysis on the
beginning three stages is given in Fig. 8. At the
first stage, a few tensile cracks (green) and
mixed-mode cracks (red) are mostly observed
near reinforcement at the central region. Activity
of cracking increases at the second stage as the
increase of mixed-mode cracks. At this stage,
bending cracks are visually observed. At the
third stage, AE

increasing the number of shear cracks (blue).

cluster expands upward,

The latter two stages are shown in Fig. 9.
Cluster of AE sources further expands and the
nucleation of cracks is really mixed up of
tensile, mixed-mode, and shear cracks. It is noted
that tensile and mixed-mode cracks are intensely
while shear

observed around reinforcement,

cracks are particularly observed at the
compressive zone. At the fifth stage, cracks
distribute widely, probably corresponding to the
nucleation of diagonal shear cracks between the

loading point and the support.

{a) Fourth stage

(b) Fifth stage

Fig. 9 Results of SIGMA analysis on the last two
stages

Combining all results analyzed, Fig. 10 is
obtained. As shown, all figures are actually
movable and rotatable. Therefore, locations and
of the
identified. This is a merit of 3-D visualization by
means of VRML.

orientations source can be visually

(a) All the data plotted

{b) Visualization from an inclined angle

Fig. 10 Results of all the data analyzed

Conclusion

Nucleation of cracks can be quantitatively
analyzed from AE waveforms, by applying
SiGMA (Simplified Green's functions for Moment
tensor Analysis) code. Crack kinematics on
locations, types and orientations are determined
three-dimensionally. Because visualization of
results is desirable, three-dimensional visualization
procedure for SIGMA analysis is developed by
VRML  (Virtual Reality = Modeling

Language). As a case study, failure process of a

using

reinforced  concrete beam is  successfully

visualized and discussed.
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