DOI QR코드

DOI QR Code

Histological Responses of the Antarctic Bivalve Laternula elliptica to a Short-term Sublethal-level Cd Exposure

  • Choi, Hee-Seon, J. (Polar Sciences Laboratory, KORDI) ;
  • Ahn In-Young (Polar Sciences Laboratory, KORDI) ;
  • Lee, Yong-Suk (Department of Life Sciences, Soonchunhyang University) ;
  • Kim, Ko-Woon (Polar Sciences Laboratory, KORDI) ;
  • Jeong, Kye-Heon (Department of Life Sciences, Soonchunhyang University)
  • Published : 2003.06.30

Abstract

To develop fast and sensitive biomarkers for metal exposures in Antarctic marine organisms we examined histological alterations of an Antarctic sentinel bivalve species Laternula elliptica following a short-term exposure to a sublethal-level of Cd. Distinct histological alterations of tissues and cells of the gills, kidneys, and digestive glands were observed after 8-to 16-hours of exposure to Cd while an increase of Cd concentrations in tissues was not detectable. Most alterations were highly localized in the epithelium of the three tissues; epithelia were found to be detached from the remaining tissue parts. In addition ultra-structural changes such as cytosolic vacuolization, dilation of nucleus and rER membranes were detected in all three tissues, which suggested that the clams are subject to sublethal stresses. Thus, histological and ultrastructural changes on localized tissue parts were rapid and sensitive, suggesting that they may serve biomarkers for Cd exposures. Linkages between the shown ulrastructural changes and higher biological organization level responses are to be established by longer-term exposure experiments.

Keywords

References

  1. Abbott, S.B. and W.S. Benninghoff. 1990. Orientation of environmental change studies to the conservation of Antarctic ecosystems. p. 394-403. In: Antarctic ecosystems. Ecological change and conservation. eds. by K.R. Kerry and G. Hempel. Springer-Verlag, Berlin Heidelberg.
  2. AbdAllah, A.T. and M.A. Moustafa. 2002. Accumulation of lead and cadmium in the marine prosobranch Nerita saxtilis, chemical analysis, light and electron microscopy. Environ. Poll., 116, 185-191. https://doi.org/10.1016/S0269-7491(01)00137-3
  3. Ahn, I.-Y. 1994. Ecology of the Antarctic bivalve Laternula elliptica (King and Broderip) in Collins Harbor, King George Island: Benthic environment and an adaptive strategy. Mem. Natl. Inst. Res., 50, 1-10.
  4. Ahn, I.-Y., S.H. Lee, K.T. Kim, J.H. Shim, and D.-Y. Kim. 1996. Baseline heavy metal concentrations in the Antarctic clam, Laternula elliptica in Maxwell Bay, King George Island, Antarctica. Mar. Poll. Bull., 32, 592-598. https://doi.org/10.1016/0025-326X(95)00247-K
  5. Ahn, I.-Y. and J.H. Shim. 1998. Summer metabolism of the Antarctic clam, Laternula elliptica (King and Broderip) in Maxwell Bay, King George Island and its implications. J. Exp. Mar. Biol. Ecol., 224, 253-264. https://doi.org/10.1016/S0022-0981(97)00201-3
  6. Ahn, I.-Y., J. Kang, and K.-W. Kim. 2001. The effect of body size on metal accumulations in the bivalve Laternula elliptica. Antarc. Sci., 13, 355-362.
  7. Bargagli, R., L. Nelli, S. Ancora, and S. Focardi. 1996. Elevated cadmium accumulations in marine organisms from Terra Nova Bay (Antarctica). Polar Biol., 16, 513-520. https://doi.org/10.1007/BF02329071
  8. Berkman, P.A. 1997. Ecological variability in Antarctic coastal environments: past and present. p. 349-357. In: Antarctic communities. Species, structure and survival. eds. by B. Battaglia, J. Valencia, and D.W.H. Walton. Cambridge University Press, Cambridge.
  9. Berkman, P.A. and M. Nigro. 1992. Trace metal concentrations in scallops around Antarctica: extending the mussel watch programme to the Southern Ocean. Mar. Poll. Bull., 24, 322-323. https://doi.org/10.1016/0025-326X(92)90594-V
  10. Calabrese, A., J.R. MacInnes, D.A. Nelson, R.A. Greig, and P.P. Yevich. 1984. Effects of long-term exposure to silver or copper on growth, bioaccumulation and histopathology in the blue mussel Mytilus edulis. Mar. Environ. Res., 11, 253-274. https://doi.org/10.1016/0141-1136(84)90038-2
  11. Choi, H.J., I.-Y. Ahn, S.-K. Ryu, Y.-S. Lee, I.-S. Lee, and K.-H. Jeong. 2001. Preliminary evidence for a metallothionein-like Cd-binding protein in the kidney of the Antarctic clam Laternula elliptica. Ocean Polar Res., 23, 337-345. https://doi.org/10.1016/S0141-1187(02)00002-0
  12. Clark, S.L., S.J. The, and D.E. Hinton. 2000. Tissue and cellular alterations in Asian clams (Potamocorbula amurensis) from San Francisco Bay: Toxicological indicators of exposure and effects? Mar. Environ. Res., 50, 301-305. https://doi.org/10.1016/S0141-1136(00)00100-8
  13. Couch, J.A. 1984. Atrophy of diverticular epithelium as an indicator of environmental irritants in the oyster, Crassostrea virginica. Mar. Environ. Res., 14, 525-526. https://doi.org/10.1016/0141-1136(84)90145-4
  14. Devi, M., D.A. Thomas, J.T. Barber, and M. Fingerman. 1996. Accumulation and physiological and biochemical effects of cadmium in a simple aquatic food chain. Ecotoxicol. Environ. Saf., 33, 38-43. https://doi.org/10.1006/eesa.1996.0004
  15. Dudley, R.E., D.J. Svoboda, and C.D. Klaassen. 1984. Time course of cadmium-induced ultrastructural changes in rat liver. Toxicol. Appl. Pharmacol., 76, 150-160. https://doi.org/10.1016/0041-008X(84)90038-3
  16. Fisher, N.S. and J.R. Reinfelder. 1995. The trophic transfer of metals in marine systems. p. 363-406. In: Metal speciation and bioavailability in aquatic systems. eds. by A. Tessier and D.R. Turner. John Wiley & Sons, Chichester.
  17. Fowler, B.A. and E. Gould. 1988. Ultrastructural and biochemical studies of intracellular metal-binding patterns in kidney tubule cells of the scallop Placopecten magellanicus following prolonged exposure to cadmium and copper. Mar. Biol., 97, 207-216. https://doi.org/10.1007/BF00391304
  18. Fowler, S.W. 1990. Critical review of selected heavy metal and chlorinated hydrocarbon concentrations in the marine environment. Mar. Environ. Res., 29, 1-64. https://doi.org/10.1016/0141-1136(90)90027-L
  19. Gamulin, S., N. Car, and P. Narancsik. 1982. Effects of cadmium on polyribosome structure and function in mouse liver. Experimentia, 33, 1144-1145.
  20. George, S.G., B.J.S. Pirie, A. Calabrese, and D.A. Nelson. 1986. Biochemical and ultrastructural observations of long-term silver accumulation in the mussel, Mytilus edulis. Mar. Environ. Res., 18, 255-265. https://doi.org/10.1016/0141-1136(86)90025-5
  21. Hinton, D.E., P.C. Baumann, G.R. Gardner, W.E. Hawkins, J.D. Hendricks, R.A. Murchelano, and M.S. Okihiro. 1992. Histopathological biomarkers. p. 155-209. In: Biomarkers. Biochemical, physiological, and histological markers of anthropogenic stress. eds. by R.J. Huggett, R.A. Kimerle, P.M. Mehrle, Jr., H.L. Bergman. Lewis Publishers, Boca Raton.
  22. Honda, K., T. Yamamoto, and R. Tatsukawa. 1987. Distribution of heavy metals in Antarctic marine ecosystem. Proceeding of NIPR Symposium on Polar Biology, 1, 184-197.
  23. Hong, S., C.Y. Kang, and J. Kang. 1999. Lichen biomonitoring for the detection of local heavy metal pollution around King Sejong Station, King George Island, Antarctica. Korean J. Polar Res., 10, 17-24.
  24. Huggett, R.J., R.A. Kimerle, P.M., Mehrle, Jr., H.L. Bergman. 1992. Biomarkers. Biochemical, physiological, and histological markers of anthropogenic stress. Lewis Publishers, Boca Raton. 347 p.
  25. Kennicutt, M.C. II, S.J. McDonald, J.L. Sericano, P. Boothe, J. Oliver, S. Safe, B.J. Presley, H. Liu, D. Wolfe, T.L. Wade, A. Crockett, and D. Bockus. 1995. Human contamination of the marine environment-Arthur Harbor and McMurdo Sound, Antarctica. Environ. Sci. Technol., 29, 1279-1287. https://doi.org/10.1021/es00005a600
  26. KORDI. 1998. Annual reports of environmental monitoring on human impacts at the King Sejong Station. Korea Ocean Research & Development Institute Report, BSPP 98001-02-1151-7. 407 p. (in Korean)
  27. Kramer, K.J.M. 1994. Biomonitoring of coastal waters and estuaries. CRC Press, Boca Raton. 327 p.
  28. Krishnakumar, P.K., P.K. Asokan, and V.K. Pillai. 1990. Physiological and cellular responses to copper and mercury in the green mussel Perna viridis (Linnaeus). Aquat. Toxicol., 18, 163-174. https://doi.org/10.1016/0166-445X(90)90024-J
  29. Langston, W.J. 1990. Toxic effects of metals and the incidence of metal pollution in marine ecosystems. p. 101-122. In: Heavy metals in the marine environment. eds. by R.W. Furness and P.S. Rainbow. CRC Press. Boca Raton.
  30. Lawson, S.L., M.B. Jones, and R.M. Moate. 1995. Effects of copper on the ultrastructure on the gill epithelium of Carcinus maenas (Decapoda: Brachyura). Mar. Poll. Bull., 31, 63-72. https://doi.org/10.1016/0025-326X(95)00075-X
  31. Lee, S.J., K.T. Kim, and S.J. Kim. 1990. Trace metals in the surface waters of Maxwell Bay, King George Island, Antarctica. Korean J. Polar Res., 1, 11-15.
  32. Lenihan, H.S., J.S. Oliver, J.M. Okaden, and M.D. Stepheson. 1990. Intense and localized benthic marine pollution around McMurdo Station, Antarctica. Mar. Poll. Bull., 21, 422-430. https://doi.org/10.1016/0025-326X(90)90761-V
  33. Lohan, M.C., P.J. Statham, and L. Peck. 2001. Trace metals in the Antarctic soft-shelled clam Laternula elliptica: implications for metal pollution from Antarctic research stations. Polar Biol., 24, 808-817. https://doi.org/10.1007/s003000100279
  34. Lowe, D.M. 1988. Alteration in cellular structure of M. edulis resulting from exposure to environmental contaminants under field and experimental conditions. Mar. Ecol. Prog. Ser., 46, 91-100. https://doi.org/10.3354/meps046091
  35. Lowe, D.M. and K.R. Clarke. 1989. Contaminant-induced changes in the structure of the digestive epithelium of M. edulis. Aquat. Toxicol., 15, 345-358. https://doi.org/10.1016/0166-445X(89)90046-5
  36. Lowe, D.M. and R.K. Pipe. 1994. Contaminant induced lysosomal membrane damage in marine mussel digestive cells: as in vitro study. Aquat. Toxicol., 30, 357-365. https://doi.org/10.1016/0166-445X(94)00045-X
  37. Marigomez, J.A., M.P. Cajaraville, and E. Angulo. 1990. Cellular cadmium distribution in the common winkle, Littorina littorea (L.) determined by X-ray microprobe analysis and histochemistry. Histochem., 94, 191-199. https://doi.org/10.1007/BF02440187
  38. Marigomez, I., M. Soto, M.P. Cajaraville, E. Angulo, and L. Giamberini. 2002. Cellular and subcellular distribution of metals in molluscs. Microsc. Res. Tech., 56, 358-392. https://doi.org/10.1002/jemt.10040
  39. Mason, A.Z., K. Simkiss, and K.P Ryan. 1984. The ultrastructural localization of metals in specimens of Littorina littorea collected from clean and polluted sites. J. Mar. Biol. Ass. UK, 64, 699-720. https://doi.org/10.1017/S0025315400030368
  40. Mauri, M., E. Orlando, M. Nigro, and F. Regoli. 1990. Heavy metals in the Antarctic scallop Adamussium colbecki. Mar. Ecol. Prog. Ser., 67, 27-33. https://doi.org/10.3354/meps067027
  41. Mayer, F.L., D.J. Versteeg, M.J. McKee, L.C. Folmar, R.L. Graney, D.C. McCumer, and B.A. Rattner. 1992. Physiological and nonspecific biomarkers. p. 5-85. In: Biomarkers. Biochemical, physiological, and histological markers of anthropogenic stress. eds. by R.J. Hugget, R.A. Kimerle, P.M. Mehrle, Jr., H.L. Bergman. Lewis Publishers, Boca Raton.
  42. McCarthy, J.F. and S.T. Shugart. 1990. Biomarkers of environmental contamination. Lewis publishers, Boca Raton. 457 p.
  43. Moore, M.N. 1985. Cellular responses to pollutants. Mar. Poll. Bull., 16, 134-139. https://doi.org/10.1016/0025-326X(85)90003-7
  44. Moore, M.N. 1988. Cellular- and histopathological effects of a pollutant gradient-summary. Mar. Ecol. Prog. Ser., 46, 109-110. https://doi.org/10.3354/meps046109
  45. Moreno, J.E.A. de, M.S. Gerpe, V.J. Moreno, and C. Vodopivez. 1997. Heavy metals in Antarctic organisms. Polar Biol., 17, 131-140. https://doi.org/10.1007/s003000050115
  46. Najle, R., M. Elissondo, S. Gentile, M. Gentile, G. Vacarezza, and H. Solana. 2000. Histopathology of the digestive gland of an Antarctic limpet exposed to cadmium. Sci. Total Environ., 247, 263-268.. https://doi.org/10.1016/S0048-9697(99)00495-7
  47. Nigro, M., E. Orlando, and F. Regoli. 1992. Ultrastructural localization of metal binding sites in the kidneys of the Antarctic scallop Adamussium colbecki. Mar. Biol., 113, 637-643. https://doi.org/10.1007/BF00349707
  48. Nott, J.A. 1998. Metals and marine food chains. p. 387-414. In: Metal metabolism in aquatic environments. eds. by W.J. Langston and M.J. Bebianno. Chapman & Hall, London.
  49. Orren, M.J. and P.M.S. Monteiro. 1985. Trace element geochemistry in the Southern Ocean. p. 30-37. In: Antarctic nutrient cycles and food webs. eds. by W.R. SiegSiegfreid, P.R. Condy & R.M. Laws. Springer-Verlag, Berlin.
  50. Pawert, M., Triebskorn, R., S. Gräff, M. Berkus, J. Schulz, and H.-R. Kohler. 1996. Cellular alterations in collembolan midgut cells as a marker of heavy metal exposure: ultrastructure and intracellular metal distribution. Sci. Total Environ., 181, 187-200. https://doi.org/10.1016/0048-9697(95)05009-4
  51. Rubio, M.R., P. Tineo, J. Diaz, and A. Torreblanca. 1993. Effects of cadmium exposure on the ultrastructure of hepatopancreatic cells of Thais haemastoma (Gastropoda, Prosobranchia). Mar. Environ. Res., 35, 47-51. https://doi.org/10.1016/0141-1136(93)90012-O
  52. SCAR/COMNAP. 1996. Monitoring of environmental impacts from science and operations in Antarctica. A report for the Scientific Committee on Antarctic Research (SCAR) and the Council of Managers of National Antarctic Programs (COMNAP).
  53. Sina, J.F. and B. Chin. 1978. Cadmium modification of nucleolar ultrastructure and RNA synthesis in physarum polycephalum. Toxicol. Appl. Pharmacol., 43, 449-459. https://doi.org/10.1016/S0041-008X(78)80004-0
  54. Suttie, E.D. and E.W. Wolff. 1993. The local deposition of heavy metal emission from point sources in Antarctic. Atm. Environ., 27A, 1833-1841.
  55. Teh, S.J., I. Werner, and D.E. Hinton. 2000. Sublethal effects of chromium-VI in the Asian clam (Potamocorbula amurensis). Mar. Environ. Res., 50, 295-300. https://doi.org/10.1016/S0141-1136(00)00086-6
  56. US EPA. 1978. Reviews of the environmental effects of pollutants: IV. Cadmium. U.S. Environmental Protection Agency, ORNL/EIS-106, EPA-600/1-78-026. 251 p.
  57. Wester, P.W., L.T.M. van der Ven, A.D. Vethaak, G.C.M. Grinwis, and J.G. Vos. 2002. Aquatic toxicology: opportunities for enhancement through histopathology. Environ. Toxicol. Pharmacol., 11, 289-295. https://doi.org/10.1016/S1382-6689(02)00021-2
  58. Yevich, P.P. and C.A. Yevich. 1994. Use of histopathology in biomonitoring marine invertebrates. p. 179-204. In: Biomonitoring of coastal waters and estuaries. eds. by K.J.M. Kramer. CRC Press, Boca Raton.
  59. Znidarsic, N., J. Strus, and D. Drobne. 2003. Ultrastructural alterations of the hepatopancreas in Porcellio scaber under stress. Environ. Toxicol. Pharmacol., 13, 161-174. https://doi.org/10.1016/S1382-6689(02)00158-8

Cited by

  1. A study on the effects of an artificial oil-spill on the ultrastructural changes in the digestive glands of Crassostrea gigas vol.27, pp.1, 2011, https://doi.org/10.9710/kjm.2011.27.1.077
  2. Histopathologic biomarker response of clam, Ruditapes decussates, to organophosphorous pesticides reldan and roundup: A laboratory study vol.44, pp.1, 2009, https://doi.org/10.1007/s12601-009-0004-5
  3. Impact of Selected Environmental Pollutants on the Ultrastructure of the Gills in <i>Pinctada radiata</i> from Coastal Zones, Egypt vol.04, pp.14, 2014, https://doi.org/10.4236/oje.2014.414076