DOI QR코드

DOI QR Code

Monitoring on the Marine Environment and Phytoplankton of Kongsfjorden, Svalbard, Arctic

북극 스발바드섬 Kongsfjorden의 해양 환경 및 식물플랑크톤 모니터링 연구

  • 강성호 (한국해양연구원 극지연구본부) ;
  • 김예동 (한국해양연구원 극지연구본부) ;
  • 강재신 (한국해양연구원 극지연구본부) ;
  • 유규철 (한국해양연구원 극지연구본부) ;
  • 윤호일 (한국해양연구원 극지연구본부) ;
  • 이원철 (한양대학교 자연과학대학 생명과학과)
  • Published : 2003.06.30

Abstract

Kongsfjorden near Korean Arctic Station, Dasan, is a glacial fjord in the Svalbard archipelago, Arctic that is influenced by both Atlantic and Arctic water masses. During the Arctic field season August 2002, surface temperature, salinity, density, and phytoplankton biomass (chi a) was measured in Kongsfjorden. A total of 15 surface samples were collected for the phytoplankton related measurements. Chl a values ranged from 0.08 to 1.4mg chi a $m^{-3}$ (mean of 0.53mg chl a $m^{-3}$) in the overall surface stations. The highest values of the chi a concentrations (> 1.0mg chi a $m^{-3}$) were found near glacier in the northeastern part of Kongsfjorden. Nanoplanktonic (< $20{\mu}m$) phytoflagellates were important contributors for the increase of the chi a. The nano-sized phytoflagellates accounted for more than 90% of the total chi a biomass in the study area. Surface temperatures and salinities ranged from 2.5 to $7.18^{\circ}C$ (mean of $4.65^{\circ}C$) and from 22.55 to 32.97 psu (mean of 30.16 psu), respectively. The physical factors were not highly correlated with phytoplankton distribution. The character of surface water due to down-fjord wind was highly similar to phytoplankton distribution. Drifting ice, freshwater, and semdiment inputs from large tidal glaciers located in the inner part of Konsfjorden create steep physico- and biogeochemical environmental gradients along the length of this ford. The glacial inputs cause reduced biodiversity biomass and productivity in the pelagic community in the inner fjord. Primary production of benthic and pelagic microalgae is reduced due to the limited light levels in the turbid and mixed inner waters. The magnitude of glacial effects diminishes towards the outer fjord. Kongsfjorden is an important feeding ground fer marine mammals and seabirds. Especially, seabirds play the largest energy intake and also export nutrients for primary production of the marine microalgae. Kongsfjorden has received a lot of research attention as a site for exploring the impacts of climate changes. Dasan Station in Kongsfjorden will be an important Arctic site for monitoring and detecting future environmental changes.

Keywords

References

  1. Aagaard, K., A. Foldvik, and S.R. Hillman. 1987. The West Spitsbergen Current: disposition and water mass transformation. J. Geophys. Res., 92, 3778-3784. https://doi.org/10.1029/JC092iC04p03778
  2. Bischof, K., D. Hanelt, H. Tug, U. Karsten, P.E.M. Brouwer, and C. Wiencke. 1998. Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters, Spitsbergen(Norway). Polar Biol., 20, 388-395. https://doi.org/10.1007/s003000050319
  3. Bischof, K., D. Hanelt, and C. Wiencke. 1999. Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biol., 1, 435-444. https://doi.org/10.1111/j.1438-8677.1999.tb00726.x
  4. Blacker, R.V. 1957. Benthic animals as indicators of hydrographic conditions and climate change in Svalbard waters. Fish. Invest., 20, 1-49.
  5. Brown, R.D. and P. Cote. 1992. Interannual variability of landfast ice thickness in the Canadian high Arctic, 1950-89. Arctic, 45, 273-284.
  6. Eilertsen, H.C., J.P. Taasen, and J.M. Weslawski. 1989. Phytoplankton studies in the fjords of West Spitsbergen: physical environment and production in spring and summer. J. Plankton Res., 11, 1245-1260. https://doi.org/10.1093/plankt/11.6.1245
  7. Forland, E.J., I. Hansen-Bauer, and P.O. Nordli. 1997. Orographic precipitation at the glacier Austre Brogger-breen. DNMI Rep. 2/97 Klima. Norwegian Meteoro-logical Inst., Oslo.
  8. Galkin, Y.I. 1998. Long-term changes in the distribution of molluscs in the Barents Sea related to the climate. Ber. Polarforsch., 287, 100-143.
  9. Gascard, J.C., C. Richez, and C. Rouault. 1995. New insights on large-scale oceanography in Fram Strait: the Spitsbergen Current. Coast. Estuar. Stud., 49, 131-182.
  10. Gerland, S., J.-G. Winther, J.B. Ørbæk, and B.V. Ivanov. 1999. Physical properties, spectral reflectance and thickness development of first year fast ice in Kongsfjorden, Svalbard. Polar Res., 18, 275-282. https://doi.org/10.1111/j.1751-8369.1999.tb00304.x
  11. Grossi, S.M., S.T. Kottmeier, R.L. Moe, G.T. Taylor, and C.W. Sullivan. 1987. Sea ice communities. VI. Growth and primary production in bottom ice under graded snow cover. Mar. Ecol. Prog. Ser., 35, 153-164. https://doi.org/10.3354/meps035153
  12. Gross, C., H. Tug, and O. Schrems. 2001. Three years of spec-tral resolved UV-measurements at Koldewey Station(1997-1999). Mem. Natl. Inst. Polar Res., Spec. Iss., 54, 113-123.
  13. Halldal, P. and K. Halldal. 1973. Phytoplankton, chlorophyll, and submarine light conditions in Kings Bay, Spitsbergen, July 1971. Norw. J. Bot., 20, 99-108
  14. Hanelt, D., H. Tug, K. Bischof, C. Grob, H. Lippert, T. Sawall, and C. Wiencke. 2001. Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar. Biol., 138, 649-658. https://doi.org/10.1007/s002270000481
  15. Hansen-Bauer, I., M. Kristensen Solas, and E.L. Steffensen. 1990. The climate of Spitsbergen. DNMI Rep. 39/90 Klima. Norwegian Meteorological Inst., Oslo.
  16. Hasle, G.R. and B.R. Heimdal. 1998. The net phytoplankton in Kongsfjorden, Svalbard, July 1988, with general remarks on species composition of Arctic phytoplankton. Polar Res., 17, 31-52. https://doi.org/10.1111/j.1751-8369.1998.tb00257.x
  17. Hasle, G.R. and C.H. von Quillfeldt. 1996. Part 8. Marine microalgae. p. 375-382. In: A catalogue of Svalbard plants, fungi, algae and cyanobacteria. eds. by A. Elvebakk and P. Prestrud. Nor. Polarinst. Skr., 198. Norwegian Polar Inst., Oslo.
  18. Hegseth, E.N. 1998. Primary production in the northern Barents Sea. Polar Res., 17, 113-123. https://doi.org/10.1111/j.1751-8369.1998.tb00266.x
  19. Holte, B. and B. Gulliksen. 1998. Common macrofaunal dominant species in the sediments of some north Norwegian and Svalbard glacial fjords. Polar Biol., 19, 375-382. https://doi.org/10.1007/s003000050262
  20. Holte, B., S. Dahle, B. Gulliksen, and K. Naes. 1996. Some macrofaunal effects of local pollution and glacier-induced sedimentation, with indicative chemical analyses, in the sediments of two Arctic fjords. Polar Biol., 16, 549-557. https://doi.org/10.1007/BF02329051
  21. Hop, H., T. Pearson, E.N. Hegseth, K.M. Kovacs, J.M. Weslawski, C. Wiencke, S. Kwasniewski, K. Eiane, R. Leakey, S. Cochrane, M. Zajaczkowski, O.J. Lønne, F. Mehlum, C. Lydersen, B. Gulliksen, S. Falk-Petersen, M. Poltermann, S.-A. Wangberg, M. Kendall, K.Y. Bischof, A. Voronkov, N.A. Kovaltchouk, G.W. Gabrielsen, M. Wlodarska-Kowalczuk, J. Wiktor, G. di Prisco, A. Estoppey, C. Papucci, and S. Gerland . 2002. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res., 21, 167-208. https://doi.org/10.1111/j.1751-8369.2002.tb00073.x
  22. Hurrell, J.W. 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676-679. https://doi.org/10.1126/science.269.5224.676
  23. Keck, A. 1999. West Spitsbergen fjords(Svalbard, Norwegian Arctic): physical settling and sedimentation. p. 58-68. In: Sedimentation and recycling in aquatic ecosystems. the impact of pelagic processes and planktonic food web structure. eds. by A.S. Heriskanen et al. Finn. Environ., 263.
  24. Keck, A., J. Wiktor, R. Hapter, and R. Nilsen. 1999. Phytoplankton assemblages related to physical gradients in an Arctic, glacier-fed fjord in summer. ICES J. Mar. Sci., 56 Suppl. 203-214. https://doi.org/10.1006/jmsc.1999.0631
  25. Loeng, H. 1991. Features of the physical oceanographic conditions of the Barents Sea. p. 5-18. In: Proceedings of the Pro Mare Symposium on Polar Marine Ecology (Polar Res., 10.). eds. by E. Sakshaug et al. Trondheim, Norway, 12-16 May 1990.
  26. Okolodkov, Y.B., R. Hapter, and S.V. Semovski. 2000. Phytoplankton in Kongsfjorden, Spitsbergen, July 1996. Sarsia, 85, 1-8.
  27. Orbaek, J.B., V. Hisdal, and L.E. Svaasand. 1999. Radiation climate variability in Svalbard: surface and satellite observations. Polar Res., 18, 127-134. https://doi.org/10.1111/j.1751-8369.1999.tb00284.x
  28. Raymond, J.A. 2000. Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biol., 23, 721-729 https://doi.org/10.1007/s003000000147
  29. Sakshaug, E., A. Bjorge, B. Gulliksen, H. Loeng, and F. Mehlum. 1994. Structure, biomass distribution, and energetics of the pelagic ecosystem in the Barents Sea: a synopsis. Polar Biol., 14, 405-411.
  30. Steichen, D.J.J., S.J. Holbrook, and C.W. Osenberg. 1996. Distribution and abundance of benthic and demersal macrofauna within a natural hydrocarbon seep. Mar. Ecol. Prog. Ser., 138, 71-82. https://doi.org/10.3354/meps138071
  31. Svendsen, H., A. Beszczynska-Møller, J.O. Hagen, B. Lefauconnier, V. Tverberg, S. Gerland, J.B. Orbaek, K. Bischof, C. Papucci, M. Zajaczkowski, R. Azzolini, O. Bruland, C. Wiencke, J.-G. Winther, and W. Dallmann. 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res., 21, 133-166. https://doi.org/10.1111/j.1751-8369.2002.tb00072.x
  32. Vinje, T. 1982. Frequency distribution of sea ice in the Greenland and Barents seas, 1971-80. Nor. Polarinst. Arb. 1980, 57-61. Norwegian Polar Inst., Oslo.
  33. Vinje, T. 2001. Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic seas during the period 1864-1998. J. Clim., 14, 255-267. https://doi.org/10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2
  34. Welch, H.E. and M.A. Bergmann. 1989. Seasonal development of ice algae and its prediction from environmental factors near Resolute, N.W.T., Canada. Can. J. Fish. Aquat. Sci., 46, 1793-1804. https://doi.org/10.1139/f89-227
  35. Weslawski, J.M. and P. Adamski. 1987. Cold and warm years in south Spitsbergen coastal marine ecosystem. Pol. Polar Res., 8, 96-106.
  36. Weslawski, J.M. and J. Legezynska. 1998. Glaciers caused zooplankton mortality? J. Plankton Res., 20, 1233-1240. https://doi.org/10.1093/plankt/20.7.1233
  37. Wiktor, J. 1999. Early spring microplankton development under fast ice covered fjords of Svalbard, Arctic. Oceanologia, 41, 51-72.

Cited by

  1. Production of mycosporine-like amino acids of in situ phytoplankton community in Kongsfjorden, Svalbard, Arctic vol.114, 2012, https://doi.org/10.1016/j.jphotobiol.2012.03.011
  2. Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden, Svalbard vol.32, pp.1, 2013, https://doi.org/10.3402/polar.v32i0.11208
  3. Macroalgal Flora of Kongsfjorden in Svalbard Islands, the Arctic vol.25, pp.4, 2003, https://doi.org/10.4217/OPR.2003.25.4.569
  4. Metal accumulation in sea urchins and their kelp diet in an Arctic fjord (Kongsfjorden, Svalbard) vol.58, pp.10, 2009, https://doi.org/10.1016/j.marpolbul.2009.07.013
  5. List of Korean Names for the Vascular Plants in Spitsbergen Island, in the Arctic Region vol.34, pp.1, 2012, https://doi.org/10.4217/OPR.2012.34.1.101