Recycling of Non-Ferrous Metals

Jae-Hyun Oh, Mi-Sung Kim* and Hee-Duck Shin**

Professor Emeritus of Yonsei University, *Korea Energy Management Corp.
**Korea Institute of Science and Tech. Information

Abstract

Prior to discuss on recycling status and future prospects for the non-ferrous metals in the Korea, Japan and U.S.A. respectively, worldwide resources of non-ferrous metals and characteristics with recycling of non-ferrous metals are reviewed. In case of recovery non-ferrous metals, recycling of automobile shredder dust and E.A.F. dust are illustrated. Finally, the problems and technological developments associated with recycling of non-ferrous metals are summarized.

Key words: Resources, Characteristics, Recycling, Dust, Developments

1. 서론

비철금속은 전자, 자동차, 정보화산업 등이 발전함에 따라 그 수요량이 크게 증가되고 있으며, 자연환경의 심화, 환경규제의 영향, 자원개발의 위축, 세계적인 메이저들의 과정화 등 여러 방면에서의 요구속으로 인하여 보다 수급이 불안정화 될 여지가 크다고 생각되어 있다. 그러므로 보다 안정적인 자원확보를 전제하기 위하여, 자원을 효율적으로 이용함과 동시에 리싸이클링에 의한 순환형 사회로 전환해 나갈 필요가 있다. 랜드 비최저활업계는, 동, 연, 아연, 알루미늄, 괴금속 등의 비철금속소재를 제조하고 있으며, 비철금속소재의 원료는 광석이지만, 스케일 및 폐기물로부터도 비철금속을 회수하고 있으며, 그 수량도 점차 증가하고 있다.

본론에서는 비철금속의 재활용 및 동, 연, 아연, 알루미늄 등에 대해서 리싸이클링 동향을 소개하고자 한다.

2. 비철금속의 리싸이클링 특성

2.1. 비철금속의 자원
표 1. 주요 비철금속 매장량과 가계연수

<table>
<thead>
<tr>
<th>금속자원</th>
<th>단위</th>
<th>확대 매장량 (R)</th>
<th>연간 평균 사용량 (P)</th>
<th>가계연수 (R/P)</th>
<th>부분량 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>연</td>
<td>천톤</td>
<td>125,000</td>
<td>5,772.4</td>
<td>22 년</td>
<td>1.5×10⁻³</td>
</tr>
<tr>
<td>주석</td>
<td>천톤</td>
<td>4,280</td>
<td>183.5</td>
<td>23 년</td>
<td>4×10⁻³</td>
</tr>
<tr>
<td>은</td>
<td>톤</td>
<td>435,779</td>
<td>14,412</td>
<td>30 년</td>
<td>1×10⁻⁴</td>
</tr>
<tr>
<td>금</td>
<td>톤</td>
<td>48,210</td>
<td>1,538.0</td>
<td>31 년</td>
<td>5×10⁻⁵</td>
</tr>
<tr>
<td>아연</td>
<td>천톤</td>
<td>295,000</td>
<td>7,254.6</td>
<td>41 년</td>
<td>4×10⁻⁵</td>
</tr>
<tr>
<td>동</td>
<td>천톤</td>
<td>560,000</td>
<td>10,572.9</td>
<td>53 년</td>
<td>0.01</td>
</tr>
<tr>
<td>니켈</td>
<td>천톤</td>
<td>109,408</td>
<td>847.3</td>
<td>129 년</td>
<td>0.01</td>
</tr>
<tr>
<td>철광석</td>
<td>백만톤</td>
<td>213,000</td>
<td>918</td>
<td>232 년</td>
<td>5.00</td>
</tr>
<tr>
<td>보오크사이트</td>
<td>백만톤</td>
<td>23,200</td>
<td>99.6</td>
<td>233 년</td>
<td>7.56</td>
</tr>
</tbody>
</table>

표 2. 1940년대부터 1980년에의 주요 비철금속 세계매장량의 추이 (단위 100만톤)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>알루미늄</td>
<td>1,605</td>
<td>3,224</td>
<td>11,600</td>
<td>22,700</td>
<td>23,200</td>
</tr>
<tr>
<td>동</td>
<td>91</td>
<td>124</td>
<td>280</td>
<td>543</td>
<td>566</td>
</tr>
<tr>
<td>냉</td>
<td>31-45</td>
<td>45-54</td>
<td>86</td>
<td>157</td>
<td>120</td>
</tr>
<tr>
<td>아연</td>
<td>54-70</td>
<td>77-86</td>
<td>106</td>
<td>240</td>
<td>295</td>
</tr>
</tbody>
</table>

메도우스 박사의 개선에 의하면 세계 인구는 증가하고, 지구의 자원은 고갈하고, 지구의 오염은 전치할 수 있게 되어 있다. 그리고 인간의 식량부족, 환경악화에 의하여 사망률이 상승하여 인구가 감소하기 시작한다.

표 1은 이미 “로마클럽”에 의해서 발표된 주요 비철금속 매장량과 가계연수이다. 이 표에 의하면 대부분의 주요 비철금속은 대체로 고갈되거나 없어지고 있다.

표 2는 1940년대부터 1980년대의 주요 비철금속 매장량의 추이를 나타낸 것이다. 전반적으로 광량이 증가하는 추세이다. 표 1, 표 2와 같이 탐색에 의해서 매장량이 증가할 수 있다는 것을 고려하지 않았고, 또 하나는 화석연료의 부실비교적 비율이 수송 후 촉격되어 리사이클링 된다는 현실을 감안하지 않았다.

2.2. 비철금속 리사이클링 특성

그림 2는 20세기의 주요 금속 생산량의 추이를 보고 있다. 1940년대부터 생산량이 증가하고 있다.

표 3. 비철금속의 종류별로의 스크램이 차지하는 비율

<table>
<thead>
<tr>
<th>금속</th>
<th>유럽</th>
<th>미국</th>
<th>일본</th>
</tr>
</thead>
<tbody>
<tr>
<td>동</td>
<td>50%</td>
<td>60%</td>
<td>47%</td>
</tr>
<tr>
<td>아연</td>
<td>29%</td>
<td>27%</td>
<td>20%</td>
</tr>
<tr>
<td>냉</td>
<td>55%</td>
<td>59%</td>
<td>38%</td>
</tr>
<tr>
<td>알루미늄</td>
<td>30%</td>
<td>28%</td>
<td>36%</td>
</tr>
</tbody>
</table>

그림 2. 20세기의 주요 금속 생산량의 추이

[그림 설명: 20세기의 주요 금속 생산량의 추이]

그림 2는 20세기의 주요 금속 생산량의 추이를 보고 있다. 주요 금속의 분포는 주로 금속물의 양, 종류, 사용량 등에 따라 차이가 있다. 주요 금속의 생산량은 지구의 자원이 고갈되고, 지구의 오염이 전치할 수 있기 때문에,

3. 우리나라 비치금속과 씨의클럽 현황\(^7, 8, 9, 10, 11\)

3.1. 주요 품목별 생산능력
2000년도 국내 주요 비치금속의 생산능력은 전기동 423천톤\(^5\), 연금 460천톤\(^5\), 백금 265천톤\(^5\)이며, 연금 40천톤\(^5\)이며, 국내 자금율은 전기동 56.3\%, 연금 115.2\%, 연금 73.0\%, 니켈 30.7\% 수준이다. 표 4에 주요 비치금속 자금 수급동향을 표시하였다. 그리고 표 5에 1차 비치금속산업 현황을 표시하였다.

3.2. 2003년 국내 비치금속 수요전망
한국비치금속협회에서 발표한 "비치금속산업의 위치와 2003년 경기전망"의 주요결과는 다음과 같다.
(1) 전기동-내전 전기동 생산은 LG-니코 동제련이 기준 47만 3,000천톤의 생산능력을 2000년 5월말 51만톤 규모로 확산하였으며, 이외 국내 금속은 연금 460천톤\(^5\), 연금 265천톤\(^5\)이며, 연금 40천톤\(^5\)이며, 국내 자금율은 전기동 56.3\%, 연금 115.2\%, 연금 73.0\%, 니켈 30.7\% 수준이다. 표 4에 주요 비치금속 자금 수급동향을 표시하였다. 그리고 표 5에 1차 비치금속산업 현황을 표시하였다.

(2) 연(연)-연의 생산은 경공 부족상태 저축에 따른 수급조절로 전기전 생산이 소폭 감소할 것으로 보인다. 국내 연 생산 감소량만큼의 물량이 내수시장이 아닌 수출시장에서 감소한 것으로 전망된다. 2002년 연의 연간
<table>
<thead>
<tr>
<th>구분</th>
<th>'98</th>
<th>'99</th>
<th>2000(E)</th>
<th>생산상위(2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>증감율</td>
<td>증감율</td>
<td>증감율</td>
<td></td>
</tr>
<tr>
<td>전기동</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>내수</td>
<td>545</td>
<td>627.5</td>
<td>764</td>
<td>40.2</td>
</tr>
<tr>
<td>수출</td>
<td>291</td>
<td>31.2</td>
<td>139</td>
<td>8.0</td>
</tr>
<tr>
<td>게</td>
<td>373</td>
<td>40.2</td>
<td>448</td>
<td>20.1</td>
</tr>
<tr>
<td>생산수입</td>
<td>463</td>
<td>24.8</td>
<td>455</td>
<td>17.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>알루미늄</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>내수</td>
<td>514</td>
<td>32.9</td>
<td>848</td>
<td>65.1</td>
</tr>
<tr>
<td>수출</td>
<td>70</td>
<td>26.3</td>
<td>32</td>
<td>54.2</td>
</tr>
<tr>
<td>게</td>
<td>584</td>
<td>24.3</td>
<td>880</td>
<td>50.7</td>
</tr>
<tr>
<td>생산수입</td>
<td>584</td>
<td>24.3</td>
<td>880</td>
<td>50.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>아연</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>내수</td>
<td>310</td>
<td>11.2</td>
<td>389</td>
<td>25.5</td>
</tr>
<tr>
<td>수출</td>
<td>167</td>
<td>83.5</td>
<td>163</td>
<td>24.3</td>
</tr>
<tr>
<td>게</td>
<td>477</td>
<td>8.4</td>
<td>552</td>
<td>15.7</td>
</tr>
<tr>
<td>생산수입</td>
<td>388</td>
<td>12.5</td>
<td>426</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>63.3</td>
<td>126</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>연</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>내수</td>
<td>245</td>
<td>16.1</td>
<td>272</td>
<td>11.0</td>
</tr>
<tr>
<td>수출</td>
<td>45</td>
<td>80.0</td>
<td>131</td>
<td>31.1</td>
</tr>
<tr>
<td>게</td>
<td>290</td>
<td>85.5</td>
<td>303</td>
<td>4.5</td>
</tr>
<tr>
<td>생산수입</td>
<td>191</td>
<td>7.3</td>
<td>190</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>28.8</td>
<td>113</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>주석</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>내수</td>
<td>8.4</td>
<td>27.6</td>
<td>12.3</td>
<td>46.4</td>
</tr>
<tr>
<td>수출</td>
<td>3.7</td>
<td>516.7</td>
<td>0.3</td>
<td>91.9</td>
</tr>
<tr>
<td>게</td>
<td>12.1</td>
<td>0.8</td>
<td>12.3</td>
<td>1.7</td>
</tr>
<tr>
<td>생산수입</td>
<td>12.1</td>
<td>0.8</td>
<td>12.3</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>나บันเทิง</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>내수</td>
<td>74.4</td>
<td>8.3</td>
<td>94.5</td>
<td>27.0</td>
</tr>
<tr>
<td>수출</td>
<td>74.4</td>
<td>6.9</td>
<td>94.5</td>
<td>27.0</td>
</tr>
<tr>
<td>게</td>
<td>74.4</td>
<td>6.9</td>
<td>94.5</td>
<td>27.0</td>
</tr>
<tr>
<td>생산수입</td>
<td>20.1</td>
<td>10.4</td>
<td>23.2</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>54.3</td>
<td>5.6</td>
<td>71.3</td>
<td>31.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>계</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>내수</td>
<td>1,696.8</td>
<td>14.9</td>
<td>2,379.8</td>
<td>40.3</td>
</tr>
<tr>
<td>수출</td>
<td>576.7</td>
<td>128.4</td>
<td>365.3</td>
<td>36.7</td>
</tr>
<tr>
<td>게</td>
<td>2,273.5</td>
<td>12.4</td>
<td>2,745.1</td>
<td>20.7</td>
</tr>
<tr>
<td>생산수입</td>
<td>972.1</td>
<td>20.4</td>
<td>1,087.2</td>
<td>11.8</td>
</tr>
<tr>
<td>수입</td>
<td>1,301.4</td>
<td>9.6</td>
<td>1,657.9</td>
<td>27.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 5. 1차 비철금속산업 현황(2000년도)</th>
</tr>
</thead>
<tbody>
<tr>
<td>업종</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>동</td>
</tr>
<tr>
<td>알루미늄</td>
</tr>
<tr>
<td>연, 아연</td>
</tr>
<tr>
<td>기타</td>
</tr>
<tr>
<td>총계</td>
</tr>
</tbody>
</table>
LME 평균가격은 2001년 수준을 유지하고 있으나 하반기부터 가격 하락세, 프리미엄 인상 등 판매조건 악화로 수치가 하락되고 있다. 하지만 중국의 연 공급부족으로 2003년 개선조짐은 유리하게 전환될 것으로 예상된다.

(3) 아연(Zinc)이연생산은 2001년 10월 11만t에서 20만t으로 설비를 확장한 영동의 영향으로 생산량이 지속적으로 증가하고 있다. 아연 국내 수요의 경우 도금장 판광 수요는 지속적으로 증가할 것으로 보이는 반면 간접도금장판광 등의 아연 원단위(합유율) 감소가 다소 우려되고 있다. 아연의 경우 국내 비철금속 중에 유일하게 생산량의 40% 이상을 수출하고 있다.

(4) 알루미늄-알루미늄 괴는 전량 수입에 의존하고 있어. 알루미늄 괴의 내수는 캐나다 생산량 및 설비증설에 따른 알루미늄 양연 업체의 생산증가로 2003년 총 수요는 103만톤으로 전반적으로 보인다.

(5) 니켈-니켈 생산은 원료인 산화니켈 공급부족으로 2003년 생산량이 2.00만 톤 가량 감소한 2만 8,000톤 정도에 이르 것으로 예상된다. 반면 내수시장은 포스코 포함업체의 스테인리스 304 공장 증설에 따라 1만t 이상 수요가 증가한 7만 5,000톤 수준에 이르 것으로 보인다. 페로니켈의 생산능력 한계로 인해 니켈 수급이 크게 증가할 것으로 전망된다.

(6) 주식-주식의 경우 2002년 공급량이 1만 6,600t
수준에서 2003년 1만 7,000t 수준으로 소폭 증가할 것으로 보인다. 주식은 전량 수
입에 의존하고 있다.

![Diagram](KT Cu)

수요	Construction 190	26%
	Electric/Electro 285	39%
	Industrial/Machin 88	12%
	Transportation 95	13%
	Consumer/General 73	10%

수요	Construction 96	24%
	Electric/Electro 124	31%
	Industrial/Machin 44	11%
	Transportation 64	16%
	Consumer/General 72	18%

| 수요 | 400 | 100% |

Source : 한국 비철 금속 협회, MERI-J

그림 5. 한국 동 시장 구조(2000년)

<table>
<thead>
<tr>
<th>연도</th>
<th>CONC</th>
<th>SCRAP</th>
<th>BLISTER</th>
<th>수입 ANODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>370</td>
<td>12</td>
<td>42</td>
<td>54</td>
</tr>
<tr>
<td>2001</td>
<td>386</td>
<td>6</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>2002</td>
<td>387</td>
<td>7</td>
<td>28</td>
<td>35</td>
</tr>
</tbody>
</table>

1) 국내 Scraps 평균 동품위: 93%(2000), 90%(2001년), 90%(2002년)
2) 수입 Scraps 평균 동품위: 95%
3) 전기독특할 중 44# 및 45# 미포함

자원리사이클링 계 12 권 제 4 호, 2003
3.3. 우리 나라 비철금속의 리싸이클링
비철재료업계에서의 리싸이클은 스크램 등을 원료로 해서 비철금속 신재료를 생산하는 리싸이클과 폐기물을 비롯한 비철금속을 회수하는 리싸이클이 있다. 여기서는 스크램을 원료로 하는 측 종류의 리싸이클 상황을 검토하고자 한다.

① 동의 리싸이클링

 국내 유동하는 동지금은, 전기동, 동스크램, 동합금 스크램의 세 종류로 분류할 수 있다. 전기동의 내수는, 전선제조, 신용품제조에 소비된다. 사용이 끝난 전선, 신

 동품은 소비되어 동스크램, 동합금의 스크램이 된다. 이

 것들도 다시 가공되어 사용되고, 사용이 끝나면 다시 스크램으로서 회수된다. 동스크램은 신용품 제조, 전선제조 등에 사용된다. 동합금스크램은 신용품 제조, 전선제조 등에 사용된다. 동합금 스크램은 신용품 제조, 동합금 및 주물, 동제목원료로 사용된다.

 이와 같은 품질 흐름에서 알다시피, 고순도알주료는 주

 로 전선제조에 사용되며, 반복 사용하는 과정에서 순도

 가 저하되어, 신용품제조, 동합금, 주물, 동제목원료에

 가스카이트리 리싸이클링이 되고 있음을 알 수 있다. 위에

 서 언급한 바와 같이 전형적인 의미에서의 동리싸이클링을

 산출은 어렵다. 거시적으로 생각한다면, 103% 가까운

 리싸이클링이 있다고 볼 수 있다. 2차원료는 고동, 동계

 의 대량이 되지 않은 스크램, 제련소 배출물(제련공정

 내의 리싸이클링)로 되어 있다. 여기서는 동제련소(LG-

 Nikko)의 내부자료를 기준으로 우리 나라 동리싸이클링

 추정치를 산출하면 다음과 같다.

 (가) 국내 발생 동스크램량 120,000톤선
 (나) 수입 동스크램량 150,000톤선
 (다) 전기동 생산량 423,000톤선
 (라)간기동 수요 843,000톤선
 (마) (가)+(나)+(다)에 의한 리싸이클링률 28.4%
 (바) (가)+(나)+(다)+(라)에 의한 리싸이클링률 63.8%
 (사) (가)+(나)+(라)에 의한 리싸이클링률 32.0%
 (아) (가)의 품목 중 60% 가정할 때 2차 원료중 전

 기동량을 사용한 리싸이클링 120,000×0.6/232,000×100=17%

 ② 연의 리싸이클링

 연의 수도수가 대부분 남축진지이고 그 외에 관광

 및 전산 등으로 다른 금속상품이 적은 남의 스크램

 은 수거되는 전량을 리싸이클링하고 있다. 특히 폐말

 축진지는 수질로와 수평료를 사용하여 국내에서 활발

 하 리싸이클링되고 있다. 이 방법은 전세계적으로 비슷한

 기술이며 국내의 기술도 세계적인 수준으로 기술수준을

 도우미기고 있다. 현재 국내의 재생연 업계는 국

 내에서 발생되는 폐말축진지나 남스크램이 부족한 신정

 으로 원료를 수급하고 있는 상태이다. 문제는 재생연 공

 정의 2차 부산물에 대한 안정적이고 경제적인 처리기술

 이 미흡하다는 것이다. 예로 제련소의 남분산의 처리문

 제, 베이커스의 청정처리 문제, 폐활선의 리싸이클링문

 제 그리고 소규모의 폐말축진지 청정 해체공정기술 등

 이다. 앞으로 보다 깨끗하고 경제적인 공정을 운영하기

 위해서는 상당한 기술이 개발되어 남의 리싸이클링이

 청정기술로 운전되는 것이 바람직하다. 2000년도 연의

 생산은 전기연(고려연)이 200,000톤이고, 재생연

 65,000톤이다. 따라서 리싸이클링 추정치는 32.5%

 (65,000/200,000×100)이다. 그러나 국내의 수수(수입을

 포함)는 동년 334,000톤으로 수수를 감안하면 리싸이클

 런은 19.5%(65,000/334,000×100)이다.

 ③ 아연의 리싸이클링

 아연은 주 생산가 아연도강판과 도금판이 50%를 차

 지하므로 이 부문에서는 아연이 농축되낸 형태로 배출되

 지 못하고 고품을 처리하는 전기고의 본질로 발생된

 다. 이 분석은 첨분과 아연 및 연이 주식으로 단순

 매매하여 왔으며 선전국에서는 아연과 연을 회수하고

 철을 첨분으로 활용한다는지 또는 일반폐기물로 처리

 하기도 한다. 이에 대한 처리법은 Wales법이 널리 일반

 화되어 있고 전기로법, 플라스마법 등 많은 연구가 이

 루어지고 있다. 그 중에서도 Wales법이 외국에서 많이

 실용화되고 있고 영화배앤법도 적용되고 있으나 국내에

 서는 아직 전기로 본질의 처리가 이루어지지 않고 있으

 며, 플라스마법에 의한 pilot시험이 진행중이다. 그 외의

 아연 스크램은 신축아연 제조에 활용되고 있으며, 합금

 스크램은 동종업계에서 재사용되고 있다. 아연의 리싸

 이클링에서라도 아연 및 합금 스크램은 2차 자원으로 활

 용되지만 균형에서 발생되는 2차 부산물 즉 아연 dross

 및 분산의 처리가 고려사항이며 이에 대한 고려적인 처

 리기술이 관리관리를 견디어야 필요하기 때문에 이에 대

 한 리싸이클링 기술의 개발이 절실하다. 우리 나라 아

 연리싸이클링에 관해서는 구체적인 통계자료 찾아볼 수

없다. 아연 스크림은 아연 드로스를 포함하여 증류액으로 재생되어 산화되어 제조(60,000톤)에 활용되고 있지만 자료를 얻을 수 없다. 또 고려이 섬에서 발생한 제
란산류물은, Ausmelt process에 의해 처리함으로서 아연 재료를도 포함하는 것으로 알고 있지만 구체적으
로는 알 수 없다. 한편 년 30만톤 발생하고 있는 재가
문분(Zn공급 약 20%)로부터 아연을 회수한다면 년 5
만톤은 생산할 수 있지만 현재로서는 그 기술을 얻을
수 없다.

④ 알루미늄의 리사이클링

국내에서 알루미늄 스크립은 순수금속으로 재활용을 처리하
여 알루미늄 ingot 생산하거나 합금생산에 이용되고, 합금 스크립은 사시나 각종 기계 부품 등으로 리사이클
링되고 있어 발생되는 형태가 특이한 스크립의 경우는
수거되지 않으면 리사이클링에 별 문제가 없다. 알루미늄
케이블의 리사이클링은 수거가 성급한 것에서 국민 개개인
분리 배출하여 쉽게 수거할 수 있는 환경이 조성될 때
가능할 것이며 도 국내에서는 캐비닛 제거시켜 캐비닛의 원
료로 사용하지 못하고 탈산재 등으로 활용되는 수준이
다. 금속재활용협회의 자료에 의하면, 2002년도 폐 알루미
늄 케이블 발생량 17,000톤, 재활용량 12,000톤으로서
재활용율은 70.6%였다. 2003년도 알루미늄 재활용계
획에 있어서 폐알루미늄케이블 발생량 17,000톤, 재활용
양 15,000톤, 따라서 재활용율은 88.2%에 도달할 것
으로 추정된다. 또 하나는 포장용 및 건축용으로 사용
되는 알루미늄 박(foil)의 리사이클링이 전혀 이루어지
지 못하는 점이다. 알루미늄박의 수거는 꾸준히 증가하
여 1997년에는 65만톤으로 극대화하여 그 양이 캐비
닛 양보다 적지 않다. 문제는 수거가 해결되지 못하여 바
로 배치되거나 소각공정으로 소실되어 자원이 납비되고
있다.

국내에서 알루미늄 재생지급 생산 시 대부분의 알루미
늄 블랙라스로가 발생(20,000톤)으로 이로 재활용하지
하여 일부 회수재생 알루미늄 지급을 생산하고 있다.
나머지 폐기되는 알루미늄 드로스를 알루미늄 시멘트,
플라이트 내화물, 내화벽돌, 내화도자기, 타일 및 알루미
늄 캐스테블 등으로 사용할 수 있는 소재로 재활용하면
자원 재활용뿐만 아니라 환경오염을 줄일 수 있어 국가
경제에 크게 이바지할 것으로 판단된다. 또한 국내에서
는 보오시사이를 연간 36만톤 정도 수입해서 수산화
알루미늄과 알루미나 등을 생산하고 있으나, 여기에서
생산된 폐기물은 Red Mud 형태로서 연간 10만톤 정도
이며, 일부 벡돌소재로 이용되는 것 외에 다른 용도로
재활용할 수 있는 방법을 모색해야 할 것이다. 2000년도
의 알루미늄 원재료는 885,000톤이고, 재생 재료량은 약
200,000톤으로 알려져 있다. 따라서 재활용율은 22.6%(200,000/885,000×100)로 산출된다.

⑤ 텅스텐(W)의 리사이클링

상당량이 재배여서 따라 텅스텐원료 WO3 전량을
중국으로부터 수입하고 있다. 텅스텐은 2,400톤/년이며, W분말로 합산하면 1,900-2,000톤이
된다. 대한민국초석화학자(Taegeu Tec)는 수입한 WO3
를 W분말 혹은 WC분말로 가공하여, 수출도 하고 국내
나라 초강(超硬)시장에 공급(840톤/년)하기도 한다. 이
840톤/년 중 50%는 대한민국초강(주)가 사용하고 나머
지 50%는 우리 나라 기타 초강업체가 사용한다. 현재
대한민국초강(주)이 배출하는 스크립은 아래와 같다.

- W분말 100톤
- WC분말(W 95%) 66톤
- grade powder(W 70%) 33톤
- 초정스크립(블랙품 혹은 테스트편) 44톤

수년 전에는 대한민국초강(주)가 초정스크립 리사이
클링 플랜트를 건설하여 가동하였으나 지금은 철수하였
다. 따라서 현재 대한민국초강(주)에서 배출되는 이들
스크립은 모두 외국에서 가져오고 처리한다고 한다. 우
리 나라 초강재료에서 사용되는 초정합금 840톤/년이
그 수명을 다하고 폐기되는 시점에서 초정합금 전량
이 대략 70% 남겨져 가정할 때, 그리고 100% 폐기한
다고 가정할 때 840×0.7×0.7(W품마) = 411.6톤/년의 텅
스텐을 얻을 수 있다. 그러나 기계공장에서 쓰고 남은
초정공구를 수거한다는 얘기도 들지 못했다. 결론으
로 우리 나라에서는 텅스텐의 리사이클링은 이루어지지
않고 있다.

3.4. 스크립 발생현황과 재생지급의 생산

① 동 스크립 발생현황

국내 동 스크립 발생량은 대략 100,000-120,000톤으로
추정되며 중부 계산된 수량을 재활용할 100,000톤으
로 추정되는데는 상동 30,000톤, 외동 30,000톤, 저금동
30,000톤, 기타 점금동 10,000톤으로 추정한다.

스랩 수집업체는 국내 약 1,000개점 정도가 있으며
이중 규모가 다소 큰 대형(도배량)은 약 100개사이며
이중 도배 22,000톤, 비변이산업 22,000톤, 성진리사
아이링 22,000톤등이 있다.

수집업체는 LG-Nikko가 약 4-50,000을 소비하고

자원리자원청 제 12 권 제 4 호, 2003
있는 데 제온시 대형폐로 사용하고 있으며 동과공업체로
는 공사, 대형공업, 단기, 농림수산공업을 라이프나
동락 제조업체로 로드(Rod) 생산업체인 선진급짜 및 중
소형산업체들이 있다. 일부 탁과공업과 제품후 협장 스크
랩은 중국등에 수출되고 있다.
② 알루미늄 합금과 생산현황
알루미늄 합금의 사용하는 업체로는 크게 알루미늄
합금과 생산업체와 제온지날란업체로 구분된다. 그
중 알루미늄 제생합금과 생산업체는 34개사(알진대한은
알루미늄 순합금과 생산)로서 생산능력을 603,100톤으
로 2002년도 324,820톤을 생산하였으며, 2003년에는
386,600톤으로 예상된다. 업체별로는 삼모산업 50,000
톤, 우신금속 29,000톤, 아진금속 23,000톤의 순이다.

현재 제온지날란업체로는 알렉스, 삼성 피엔에이
가 각각 생산능력 70,000톤, 50,000톤으로 실제 생산량
에 비해 애비공정을 끌어고 있으며, 생산은
36,000톤, 24,000톤이며 기타 업체가 10,000톤 정도 생
산하고 있다. 수요업체로는 포스코가 전체 60,000톤중
약 50,000톤 이상을 소비하고 있어 전체 80%을 차지하고
있으며, 그 외 인천재활, 동제재 등이 있으며 산업의
성장성은 국내 제온지날란과 크게 연관되어 있다.

용해설비로는 반사용주들 이루어지고 있는데 연속작업
이 가능하여 생산이 효율적이며 반면 용도는 배치방식
으로 연속작업이 불가능하여 제조하지 않고 있다. 원료
산크립 중 약 80%를 수입에 의존하고 있는데 이는
국내 스크립 발전의 잠재적인 부족과 동급원 스크립
설비능력 부재에 기인한다.
③ 제생업 생산실적
국내 제생업 업체는 현재 8개사로 생산능력은 94,200
톤이며 2002년 생산은 63,900톤이며, 2003년은 60,000
톤으로 예상된다. 업체별로는 중일 20,000톤, 상산금속
15,600톤, 삼지금속공업이 11,500톤 순이다.

4. 日本과 미국의 비철금속리사이클링 동향
4.1. 동의 리사이클링
표 7에 국별 1인당 동 소비량과 전 소비량의 추이를
포시하였다. Williamson[12]은 세계 여러 나라의 1인당 동
소비량을 달러바이스의 GNP에 대해서 프로트하되, GNP
의 증가에 따라 10kg 부근에 수렴한다고 밝히고 있다.
금후 발전도상국을 중심으로 하여 인구증가와 생활수준
향상의 상승효과에 의한 동 소비량의 급증이 예상된다.

<table>
<thead>
<tr>
<th>연도</th>
<th>미국</th>
<th>일본</th>
<th>중국</th>
<th>인도</th>
<th>천문</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>8.2</td>
<td>1,958</td>
<td>10.2</td>
<td>1,226</td>
<td>0.39</td>
</tr>
<tr>
<td>1990</td>
<td>8.6</td>
<td>2,150</td>
<td>12.8</td>
<td>1,577</td>
<td>0.44</td>
</tr>
<tr>
<td>1995</td>
<td>10.3</td>
<td>2,716</td>
<td>11.4</td>
<td>1,145</td>
<td>0.75</td>
</tr>
<tr>
<td>2000</td>
<td>0.93*</td>
<td>1,207*</td>
<td>0.12*</td>
<td>134*</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1.28*</td>
<td>1,784*</td>
<td>0.13*</td>
<td>161*</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>1.81*</td>
<td>2,738*</td>
<td>0.15*</td>
<td>209*</td>
<td></td>
</tr>
</tbody>
</table>

*중국의 증가율 7.8%/년, 인도 0.8%/년을 가정

<table>
<thead>
<tr>
<th>용도</th>
<th>전기동</th>
<th>동 스크립</th>
<th>동 합금스러프</th>
</tr>
</thead>
<tbody>
<tr>
<td>천리</td>
<td>844</td>
<td>221</td>
<td>-</td>
</tr>
<tr>
<td>신동품</td>
<td>474</td>
<td>476</td>
<td>628</td>
</tr>
<tr>
<td>동합금·주물</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>재판</td>
<td>-</td>
<td>-</td>
<td>149</td>
</tr>
<tr>
<td>기타</td>
<td>29</td>
<td>67</td>
<td>140</td>
</tr>
<tr>
<td>합계</td>
<td>1,347</td>
<td>765</td>
<td>918</td>
</tr>
</tbody>
</table>

① 일본에 있어서의 동의 리싸이클링

표 8은 일본의 동과금 수요량(2000년도)을 표시하였 다. 전기동(Cu 99.9% 이상), 동 스크램(Cu 97% 이상), 동 합금스크램(Cu 50% 이상)의 세 종류로 분류해서 통계를 취하고 있다. 전기동의 내수는 1,347 천톤이며, 전선 제조에 62%, 신용품 제조에 35%가 소비된다. 사용이 끝난 전선, 신용품은 회수되어, 동 스크램, 동 합금의 스크램이 된다. 이와 같이, 물질 호흡을 보면, 고용도의 경 우는 주로 전선제조에 사용되고, 재사용하고 있는 과정 에 순도가 저하해져, 신용품 제조, 동합금, 수출, 동 재 콘원료로, 가스레이터 리싸이클링을 통해 이 용할 수 있다.

그림 6위는 일본 전기동 생산량과 2차 원료사용의 상황을 표시한 것이다. 전기동 생산량은 증가하고 있지만, 2차 원료에서 생산된 전기동 생산량의 증가는 볼 수 있고, 그 비율은 10% 정도이다. 2차 원료 사용량에 대한 2차 원료에서 생산된 전기동 생산량의 비는, 2차 원료의 대략의 동 폐물의 나머지를 나타낸다고 볼 수 있으며, 그 추정값은 55~70% 정도이다.

그림 7위는 일본의 동 노페스크램 회수율(1994년도)을 도시한 것이다. 폐제품의 배출에 따른 동의 배출량 추정치는 560 천톤이고, 그 중 국내에서 337 천톤, 해

자원리싸이클링 제 12 권 제 4 호, 2003
표 9. 미국의 동 생산량(단위: 천톤)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>2,070</td>
<td>2,140</td>
<td>1,890</td>
<td>1,590</td>
<td>1,600</td>
</tr>
<tr>
<td>Secondary</td>
<td>396</td>
<td>349</td>
<td>230</td>
<td>209</td>
<td>170</td>
</tr>
<tr>
<td>All old scrap</td>
<td>498</td>
<td>466</td>
<td>381</td>
<td>353</td>
<td>310</td>
</tr>
<tr>
<td>Price(cents per pound)</td>
<td>107</td>
<td>78.6</td>
<td>75.9</td>
<td>88.2</td>
<td>76</td>
</tr>
</tbody>
</table>

표 10. 1996년도 남의 국내용도 (정면+재생원)

<table>
<thead>
<tr>
<th>소재량 (천톤/년)</th>
<th>비율 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>연간판</td>
<td>12</td>
</tr>
<tr>
<td>축가공</td>
<td>133</td>
</tr>
<tr>
<td>무기탁품</td>
<td>41</td>
</tr>
<tr>
<td>태</td>
<td>11</td>
</tr>
<tr>
<td>기타</td>
<td>34</td>
</tr>
<tr>
<td>합계</td>
<td>330</td>
</tr>
</tbody>
</table>

표 11. 영국에서의 남의 주요용도

<table>
<thead>
<tr>
<th>소재량 (천톤/년)</th>
<th>비율 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>연간판</td>
<td>91</td>
</tr>
<tr>
<td>축가공</td>
<td>107</td>
</tr>
<tr>
<td>화성품</td>
<td>56</td>
</tr>
<tr>
<td>태</td>
<td>7</td>
</tr>
<tr>
<td>기타</td>
<td>50</td>
</tr>
<tr>
<td>합계</td>
<td>311</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>용도</th>
<th>전기연</th>
<th>재생연</th>
<th>납의 스크램블</th>
</tr>
</thead>
<tbody>
<tr>
<td>연간판</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>축가공</td>
<td>186</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>전사광</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>무기탁품</td>
<td>33</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>태 및 연</td>
<td>7</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>합금 괴</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>재생</td>
<td>-</td>
<td>-</td>
<td>138</td>
</tr>
<tr>
<td>기타</td>
<td>16</td>
<td>2</td>
<td>85</td>
</tr>
<tr>
<td>합계</td>
<td>251</td>
<td>50</td>
<td>237</td>
</tr>
</tbody>
</table>

자료: World Metal Statistics(1996)

외에서 45천톤이 리싸이클되고, 178천톤이 매립되고 있다. 노폐 동스크램의 리싸이클율은 382/560 = 68.2%로 높다.

이것은 전력, 통신, 철도케이블 197천톤이 거의 100% 수선텐 리싸이클되고 있기 때문에, 케이블 이 외 부문의 리싸이클율은 높지 않다. 기기류·금속재품 21.9%, 자동차 53.0%, 산업기계·선박 등 방광공조 81.0%, 건설 55.5%이다.

(2) 미국에 있어서의 동의 리싸이클링

표 9은 미국의 동 생산량을 표시한 것이다. 2001년도 동생산량은 1차지금(장광으로부터)이 160만톤이고, 2 차지금(New scrap으로부터)이 17만톤, 모든 old 스크램 으로부터가 31만톤이다. 1차 지금에 대한 스크램 동량 은 약 30%에 해당된다.

4.2. 납의 리싸이클링

(1) 일본에 있어서의 납의 리싸이클링

표 10에 1996년도 일본에서의 납의 주요용도를 표시하였다. 납 축가공 용도가 71%, TV용 브라운관 및 PVC 안정제에 사용되는 산화납 등의 화성물에 12%, 기타 17%이다. 참고로 표 11에 영국에서의 납의 용도별 사용량을 표시하였다. 영국에서는 현재도 저층 용 이용이 많아 높은 비율을 차지하고 있다.

표 12에 2000년도 일본의 납지금의 국내수요량을 표시하였다. 전기납(Pb 99.95% 이상), 재생납(Pb 90% 이상), 납스크램(Pb 50% 이상)으로 분류해서 통계를 취 하고 있다. 동의 물질화합과 큰 차이는, 동은 중간 재생을 하지 않고 순수로 가정할 때까지 재사용하지만 납은「재생」이란 리싸이클링이 존재한다. 이것은 납은 동보 다 산화가 쉽게 이루어지는 이유인 것 같다. 따라서 납은 재사용이 극히 적고, 회수된 스크램은 대부분 납제련을 하게 된다.

그리고 8은 연도별 전기납 생산량과 2차원으로 사용의 상황을 도시한 것이다. 전기납의 생산량은 서서히 감소 하고, 2차 원료에서 생산된 전기납량은 증가하고 있다. 전 생산량에 대한 2차 원료 생산 전기납의 비율은
20%부터 45% 가까이 증가하고 있다. 따라서 2차 원료 중 납의 추정품위는 30~40% 정도였던 것이 65% 정도까지 상승하고 있다.

이 급격한 변화는 (사)전지공업회가 ‘납 리싸이클 프로그램’을 발표 추진하였기 때문이다. 이 프로그램은 사용된 축전기부터 납을 리싸이클하는 비용을 축전기메이커가 부담해서 축전기의 리싸이클을 추진하는 사업이다. 참고적으로 표 13에 소형납축전지 구성재료의 1

<table>
<thead>
<tr>
<th>포卓</th>
<th>소형납축전지 구성재료의 1예</th>
<th>(단위: kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>형식</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NS40Z</td>
<td>6M-8</td>
</tr>
<tr>
<td>전증량</td>
<td>11.0</td>
<td>1.6</td>
</tr>
<tr>
<td>납</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>안착목</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>회양판</td>
<td>3.05</td>
<td>0.4</td>
</tr>
<tr>
<td>콜라스틱등</td>
<td>1.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>

表 14. 미국의 동서양의 납 생산 (단위: 천톤)

<table>
<thead>
<tr>
<th>Production</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>343</td>
<td>337</td>
<td>350</td>
<td>341</td>
<td>300</td>
</tr>
<tr>
<td>Secondary</td>
<td>1,040</td>
<td>1,060</td>
<td>1,060</td>
<td>1,080</td>
<td>1,030</td>
</tr>
<tr>
<td>Price(cents per pound)</td>
<td>46.5</td>
<td>45.3</td>
<td>43.7</td>
<td>43.6</td>
<td>44</td>
</tr>
</tbody>
</table>

表 15. 일본의 아연지급의 수요량 (2000년도) (단위: 천톤)

<table>
<thead>
<tr>
<th>용도</th>
<th>아연신지급</th>
<th>재생아연</th>
<th>아연스크램</th>
</tr>
</thead>
<tbody>
<tr>
<td>도금</td>
<td>415</td>
<td>39</td>
<td>12</td>
</tr>
<tr>
<td>신용품</td>
<td>75</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>아연다이캐스트</td>
<td>54</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>무기철속</td>
<td>36</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>아연판</td>
<td>5</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>제련</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>재생</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>기타</td>
<td>29</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td>합계</td>
<td>668</td>
<td>74</td>
<td>88</td>
</tr>
</tbody>
</table>

예를 보시시다.

② 미국에 있어서의 납의 리싸이클링

表 14에 미국의 납 생산량을 연도별로 표시하였다. 2001년도 1차 지급량은 300천톤으로, 재생지급량 1,030천톤 보다 월등히 적다. 이것은 오랫동안의 전통으로 되어 있다.

4.3. 아연의 리싸이클링

① 일본의 아연의 리싸이클링

表 15에 일본의 아연지급의 수요량을 표시하였다. 국내에서 유동하는 아연지급, 아연신지급(Zn 98% 이상, 전기아연과 증류아연의 2종류가 있기 때문에 아연
표 16. 1차 재활용료에 있어서 광석 이외의 원료(%)

<table>
<thead>
<tr>
<th>원료</th>
<th>농</th>
<th>남</th>
<th>여인</th>
</tr>
</thead>
<tbody>
<tr>
<td>소득</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>소득</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>소득</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

신자금으로 표기), 재생아연(Zn 90% 이상), 아연스크램
(Zn 50% 이상 90% 미만)의 3종류로 분류해서 통계를
취하고 있다. 아연신자금의 내수는, 도금용에 68%, 신
종지에 12%, 다이캐스트재료에 9%, 무기적용재료
에 6%이다.

아연의 물질호흡의 형태는, 남과 남여지만 남에 비해
서 재활용료가 되는 것이 적은 것은, 통계대상 외의 아
연스크램이 많기 때문이다. (아연제년용 원료가 되는 스
크램의 중심은 제강분산이지만, 이것은 Zn 풍위가 낮기
때문에 아연 스크램으로 간주되지 않는다.)

그림 9은, 아연신자금과 2차원료 사용의 상황을 도
시하였다. 아연신자금의 생산량은 약간씩 감소하는 경
향에 있지만 2차원료 사용의 아연신자금량은 소량 증가
하고 있다. 2차 원료중의 추정 Zn 풍위는 50~60%으로
상승 경향에 있다.

표 16은 일본에 있어서 1996년도 1차 재활용료에
 있어서 광석 이외의 원료비율을 표시한 것이다. 남은
38%를 나타내고 있는 반면 동 9%, 여인 16%이다.

표 17는 2000년도 일본 비철제련업계의 폐기물처
리 - 라싸이아 의직을 참고적으로 표시하였다.

표 17. 비철제련업계의 폐기물처리 - 라싸이아의 실적(2000년도)

<table>
<thead>
<tr>
<th></th>
<th>A. 라싸이아원료</th>
<th>B. 재활용료</th>
</tr>
</thead>
<tbody>
<tr>
<td>원료</td>
<td></td>
<td>재활용</td>
</tr>
<tr>
<td>농산물</td>
<td>112,704</td>
<td>농산물</td>
</tr>
<tr>
<td>도금용</td>
<td>85,991</td>
<td>도금용</td>
</tr>
<tr>
<td>깃대</td>
<td>124,223</td>
<td>깃대</td>
</tr>
<tr>
<td>남산물</td>
<td>22,606</td>
<td>남산물</td>
</tr>
<tr>
<td>아연스프레그</td>
<td>35,681</td>
<td>아연스프레그</td>
</tr>
<tr>
<td>폐기물</td>
<td>3,960</td>
<td>폐기물</td>
</tr>
<tr>
<td>재활용류</td>
<td>680</td>
<td>재활용류</td>
</tr>
<tr>
<td>폐전자부품/부품</td>
<td>10,334</td>
<td>폐전자부품/부품</td>
</tr>
<tr>
<td>기타</td>
<td>5,520</td>
<td>배트레인</td>
</tr>
<tr>
<td></td>
<td></td>
<td>유리기재</td>
</tr>
<tr>
<td></td>
<td></td>
<td>화성품</td>
</tr>
<tr>
<td></td>
<td></td>
<td>금속원료</td>
</tr>
<tr>
<td>합계</td>
<td>437,380</td>
<td>합계</td>
</tr>
</tbody>
</table>

제 18은 미국에 있어서의 아연신자금량
표 18은 미국에 있어서의 연도별 아연 생산량을
표시하였다. 2001년도 1차지금(전기용, 증류용) 생
산량은 230천인이고 재생아연량은 133천인이다. 55%가
도금용으로, 17%가 아연합금용으로, 13%가 브라스 및
브론스용으로, 15%가 기타용이다.
표 18. 미국에 있어서의 아연생산량
(단위: 천톤)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>226</td>
<td>234</td>
<td>241</td>
<td>228</td>
<td>230</td>
</tr>
<tr>
<td>Secondary</td>
<td>140</td>
<td>134</td>
<td>131</td>
<td>143</td>
<td>133</td>
</tr>
<tr>
<td>Price(cent per pound)</td>
<td>64.6</td>
<td>51.4</td>
<td>53.5</td>
<td>55.6</td>
<td>45.0</td>
</tr>
</tbody>
</table>

4.4. 알루미늄의 리싸이클링

일본은 미국 다음 세계 제2위의 Al 수출소비국이고, 리싸이클링은 전량 수입하고 있다. Al산업은, 수입지금과 Al 2차지금(재생지금)을 원료로 하고 있으며, 1994년도 신지금 2,343만톤, 2차지금이 1,274만톤 사용되었다.

그림 10. 알루미늄제품의 생산 및 리싸이클 상황(1994)

그림 11. AI스크립트의 회수루트

자원리싸이클링 제 12권 제 4호. 2003
표 19. 미국에 있어서 Al 생산량

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>3,603</td>
<td>3,713</td>
<td>3,779</td>
<td>3,668</td>
<td>2,600</td>
</tr>
<tr>
<td>Secondary</td>
<td>1,530</td>
<td>1,500</td>
<td>1,570</td>
<td>1,370</td>
<td>1,300</td>
</tr>
<tr>
<td>Price(cents per pound)</td>
<td>77.1</td>
<td>65.5</td>
<td>65.7</td>
<td>74.6</td>
<td>70</td>
</tr>
</tbody>
</table>

소모하기 때문에, 리싸이클링의 향상은, 성능비교 및 리
싸이클 양면으로 중요하다.
(2) 미국에 있어서의 Al 리싸이클링

표 19(15)에 미국에 있어서의 Al 생산량을 표시하였다. 2001년도의 1차지금은 2,600천톤이고, 2차지금은 1,300
천톤이다. 1차지금의 2차지금의 비율은 66.7:34.3으로
재생지금의 비율이 높은 편이다.

5. 일본에 있어서의 슈레더분진 및 제강분진으로
부터 비철금속의 회수

5.1. 슈레더분진의 처리

표 20(18)은 자동차 생산용 원재료의 내역이다. 동, 연,
아연, Al 등의 비철금속은 상당량 사용하고 있다. 사용
후 해체 시 이를 비철금속이 회수되기도 하나, 대부분
슈레더분진에 포함된다. 표 21(19)은 슈레더분진의 분석
예를 표시한 것이다. Cu 3.32%, Pb 0.40%, Zn 0.97%,
Al 4.18% 등으로 비철금속이 포함되어 있다.

일본 3일 시리싸이클(주)에서는, 유방 아연제련시설을
활용해서 슈레더분진을 처리하고 있으며, 그 프로세스
개념도는 그림 12와 같고, 동, 연, 아연의 회수율은
표 22와 같다.

표 21. 슈레더분진의 분석 예

<table>
<thead>
<tr>
<th>C</th>
<th>M</th>
<th>Cl</th>
<th>S</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Al</th>
<th>Fe</th>
<th>SiO2</th>
<th>CaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.9</td>
<td>5.58</td>
<td>1.31</td>
<td>0.39</td>
<td>3.32</td>
<td>0.40</td>
<td>0.97</td>
<td>4.18</td>
<td>6.49</td>
<td>11.5</td>
<td>3.9</td>
</tr>
</tbody>
</table>

![그림 12. 슈레더분진 처리 프로세스 개념도](image)

생물 A B 생물 A B
Zn 32 24 Cd 0.04 -
Fe 20 31 Cu 0.24 -
Pb 2.8 1.7 CaO 1.4 3.1
Cl 6.8 3.6 SiO₂ 2.9 3.2
F 0.2 0.1 C 1.0 2.1
Na - 1.0 S 2.9 0.3
K - 0.8

5.2. 전기로 제거분진의 처리

일반적으로 전기로 제거분진의 약 1.5%의 분진이 발생하여, 년간 50만t의 분진이 발생한다. 표 2331에 제거분진의 조성 예를 표시하였다. 단순 계산에 의하면 이 분진의 아연량은 15만t로 되어 있다. 일본의 년간 아연 생산량이 60~70만t이기 때문에 이 분진의 중요성을 느낄 수 있다. 표 24은 제거 단서로 처리 프로세스를 표시한 것이다. 최근 처리기술이 활발하게 개발되어 제안 혹은 실용화되고 있다.

6. 금호의 과제

6.1. 리싸이클링의 문제점

리싸이클링은 버진원료부터 생산한 경우에 비해서 성
표 25. 비전원료를 2차원료로 대체했을 때 얻을 수 있는 염관부하의 경감효과

<table>
<thead>
<tr>
<th></th>
<th>알루미늄</th>
<th>철강</th>
<th>종이</th>
<th>유리</th>
</tr>
</thead>
<tbody>
<tr>
<td>에너지의 작각</td>
<td>90-97%</td>
<td>47-74%</td>
<td>23-74%</td>
<td>4-32%</td>
</tr>
<tr>
<td>대기오염의 작각</td>
<td>95</td>
<td>85</td>
<td>74</td>
<td>20</td>
</tr>
<tr>
<td>수질오염의 작각</td>
<td>97</td>
<td>76</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>폐기물의 작각</td>
<td>-</td>
<td>97</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>사용수의 작각</td>
<td>-</td>
<td>40</td>
<td>58</td>
<td>50</td>
</tr>
</tbody>
</table>

에너지와 동시에 대기오염, 수질오염에 의한 환관부하를 경감시키는 기능성이 있다. 그 외 예를 표 25에 표시하였다. AI스크립트 리싸이클링 예에서는 AI폰당 90-97%의 성능지, 95%의 대기오염, 97%의 수질오염을 경감시킬 수 있을음을 나타내고 있다. 그러나 근년 산업, 특히 전기기기부품의 혁신에 따라 기능성의 구조, 복합재료의 다양화, 제거 과정에서의 현장수습을 정확한 원금사용의 증가 등으로 리싸이클링을 복잡하게 하는 경향이 있다.

이와 같은 폐기물이 배출되는 예를 표 25과 같은 큰 폭의 환관부하의 경감기 기대할 수 있다. 비전관수의 리싸이클링에는, 불순물이 혼합된 채로 직합한 용도로 사용하는, 소위 카스케이드의 이용방법과, 비전관수 가까운 조소로 경제하는 경우를 고려할 수 있다. 후자의 경우 처리비가 높게되어 비전관보다 고가일 때가 많다. 따라서 리싸이클링의 연구에는, 보다 경제적인 경제 기술의 개발과 더불어, 리싸이클링을 염두에 둔 재료조성의 선력, 그리고 제품의 소재별 특성을 용이하게 하는 설계가 필요하다.

6.2. 리싸이클링 기술의 개발

리싸이클링기술에는 신광기술이 널리 이용되고 있으나, 일부 독특한 기술, 가령 냉동과 제, 화장류전반, 색재 선별, 지성유체에 의한 비전관 등이 개발되고 있다. 그러나 현장에 있어서 수선별(hand picking)보다 효과적인 선별수단은 없고, 단순이미가 비만 선진국에서는 경제성이 문제될 것이다. 따라서 금후 수선별 대체할 수 있는 성격적인 처리법의 개발이 기대된다.

천연광석의 처리에는 물리적인 신광기술과 화학적인 재처리기술에는 개별적인 하분차원에서 발달해 왔다. 그러나, 폐기물의 처리에는 복합적 함성을 한층의 균형의 조합뿐만 아니라, 폐리를와 같은 유기물과의 혼합체, 복합재료 등의 폐기물이 있다. 그러므로 물리선별, 화학 처리, 생물처리와 같은 효율적인 조합 및 경제영역의 연 구가 필요할 것으로 사료된다. 이와 같은 조합처리에 의해서 지금까지는 없었던 리싸이클링 기술의 창출이 가능하게 될 것이다.

비전관수는 자원권리면에서나, 환관권리면에서나 100%의 리싸이클링이 대상이 되어야 하고, 그러기 위해서는 이익을 얻을 수 있는 리싸이클링기술이 수반되어야 한다. 그러므로, 리싸이클링 기술개발과 더불어 리싸이클링 시스템 구축을 향후에 노력할 필요를 강조해야 할 것이다.

참고문헌

3. 三武邦彦, 2000: リサイクルしてはいけない 71p. 青春出版社
7. 김수봉, 2003. 6: 국내 비관광제 재활용 현황, 제7회 케 기술리처리 및 재활용 워크숍, pp. 55-74, 한국비용자원연 구원
8. 비관광제 리싸이클링 현황과 방향방향, 1992: 산업연 구원
9. KOTIS 자료, 한국무역협회
10. 알루미늄 재활용협력 생산협회, 한국비관광금속협회
11. 재생광 생산협회, 한국비관광금속협회
15. Han, K. N., 2002: The Recovery of Metals from Secondary

學會誌 投稿 安內

<table>
<thead>
<tr>
<th>種 類</th>
<th>内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>論 議</td>
<td>提案, 意見, 挑戦, 時評</td>
</tr>
<tr>
<td>展望, 解說</td>
<td>現況と将来的展望, 研究技術の総合解説, Review</td>
</tr>
<tr>
<td>技術報告</td>
<td>実際的実験, 調査の報告</td>
</tr>
<tr>
<td>技術, 行政情報</td>
<td>価値のある技術, 行政情報を関連して解説する, Commentも含まれる</td>
</tr>
<tr>
<td>見聞記</td>
<td>国内,国際会議の報告, 国内外の研究動向の見聞記等</td>
</tr>
<tr>
<td>書評</td>
<td></td>
</tr>
<tr>
<td>談話室</td>
<td>会员相互の情報交換, 会员自由討論場, 阅覧室等</td>
</tr>
<tr>
<td>Group紹介</td>
<td>企業, 研究開発, 人材等の紹介</td>
</tr>
<tr>
<td>研究論文</td>
<td>Original研究論文を含む学会誌の掲載について, 適宜な場合, さらに増える</td>
</tr>
</tbody>
</table>

注: 学会誌の内容は一定の種類と内容で成り立つ。