Preparation and Characterization of Elastomeric Conductor based on Magnetite and Chloroprene Rubber

$Fe_3O_4$와 Chloroprene Rubber (CR)를 기초로한 탄성 전도체의 제조 및 특성연구

  • Published : 2003.03.31

Abstract

In this work, $Fe_3O_4$ (magnetite), conductive filler was prepared from $FeCl_2{\cdot}4H_2O,\;(CH_2)_6N_4$ (hexamethylene tetramine), and $NaNO_2$, followed by mixing with crystallizable chloroprene rubber(CR). The influence of conductive filler content on the properties of the conductive composite was studied and temperature dependence of the electrical conductivity (${\sigma}$) was also investigated. It is found that the percolation threshold concept holds true for the conductive particle-filled composite where ${\sigma}$ indicates a nearly sharp increase when the fraction of magnetite in the mixture exceeds 27%. The temperature dependence of ${\sigma}$ is thermally activated blelow or at the $P_c$. Magnetite acts as reinforcement and conductive filler for CR rubber. Moreover, it is shown that the composite with magnetite of 50 phr gives the most significant mechanical properties for tensile strength and elongation at break, which is due to the formation of optimum physical interlock and crosslinking. The results of 100%, 200%, and 300% moduli suggest that the moduli are related with reinforcement effect of magnetite and viscosity of the blend.

본 연구에서는 $FeCl_2{\cdot}4H_2O,\;(CH_2)_6N_4$ (hexamethylene tetramine) 그리고 $NaNO_2$로부터 $Fe_3O_4$ (magnetite)를 제조하고 결정성 CR고무에 배합하여 전도성 충전제의 함량이 물성에 미치는 효과와 전기전도도 (${\sigma}$)의 온도 의존성을 조사하였다. 최소 최적 혼합비(percolation threshold, $P_c$) 개념이 본 연구에서 제조한 전도성 입자가 충전된 복합체에 적용되며, 혼합물내 $Fe_3O_4$의 분율이 27%를 초과할 때 전기전도도가 급격히 증가함을 확인하였다. 전기전도도의 온도 의존성은 $P_c$ 또는 그 이하에서 열적으로 활성화되며 magnetite가 CR 고무의 강화 및 전도성 충전제로서의 역할을 할 수 있음을 조사하였다. 또한, 50 phr의 magnetite가 충전된 복합체가 최적의 물리적 가교점으로 인하여 가장 우수한 인장강도와 파단시 신장율을 보였으며 모듈러스가 magnetite 의 강화효과 및 블랜드물의 가황 토오크 곡선으로부터 얻은 점도와 관련이 있음을 확인하였다.

Keywords

References

  1. J. C. Salamone, 'Encyclopedia of Polymeric Materials', ed. by J. C. Salamone, CRC Press, New York, 1996
  2. F. Faez, W. A. Gazotti, and M. A. Paoli, 'An elastomeric conductor based on polyaniline prepared by mechanical mixing', Polymer, 40, 5497 (1999) https://doi.org/10.1016/S0032-3861(98)00775-7
  3. M. Wan, M. Li, J. Li, and Z. Li, 'Transparent and conductiong coatings of polyaniline composites', Thin Solid Films, 259, 188 (1995) https://doi.org/10.1016/0040-6090(94)06394-X
  4. J. C. Salamone, 'Encyclopedia of Polymeric Materials', ed. by J. C. Salamone, CRC Press, New York, 1996
  5. H. Q. Xie, Y. M. Ma, and J. S. Guo, 'Conductive polyaniline-SBS composites from in situ emulsion polymerization', Polymer, 40, 261 (1998) https://doi.org/10.1016/S0032-3861(98)00224-9
  6. P. B. Jana and S. K. De, 'Magnetic scattering of Co on the surface of AI thin films', Polym. Comm., 32, 376 (1991)
  7. M. H. Ali and A. A. Hashem, 'Percolation concept and the electrical conductivity of carbon blackpolymer composites 3: Crystallisable chloroprene rubber mixed with FEF carbon black', J. Mater. Process. Technol., 68, 163 (1997)
  8. N. Tsuda, K. Nasu, F. Atsushi, K. Siratori, 'Electronic Conduction in Oxides', ed. by N. Tsuda and K. Siratori, New York, 1994
  9. R. Faez and M. A. Paoli, 'A conductive rubber based on EPDM and polyaniline I. Doping method effect', Eur. Polym. J., 37, 1139 (2001) https://doi.org/10.1016/S0014-3057(00)00235-4
  10. K. Cheah, M. Forsyth, and G. P. Simon, 'Conducting composite using an immiscible polymer blend matrix', Synth. Met., 102, 1232 (1999) https://doi.org/10.1016/S0379-6779(98)01436-2
  11. F. J. Flory, 'Principles of Polymer Chemistry', ed. by F. J. Flory, Cronell University Press, Ithaca, NewYork, 1953
  12. M. H. Ali and A. A. Hashem, 'Percolation concept and the electrical conductivity of carbon blackpolymer composites 3: Crystallisable chloroprene rubber mixed with FEF carbon black', J. Mater. Process. Technol., 68, 168 (1997)
  13. J. S. Ventras, J. L. Duda, and H. C. Ling, 'Antiplasticization and volumetric behavior in glassy polymers', Macromelecules, 21, 1470 (1988) https://doi.org/10.1021/ma00183a042
  14. S. J. Park and . R. Lee, 'Hybrid matrix systems to improve the properties of fiber reinforced composites', J. Mater. Sci., 33, 647 (1998) https://doi.org/10.1023/A:1004373208656
  15. S. J. Park, H. S. Cho, and J. R. Lee, 'Studies on the surface free energy of carbon-carbon composites: Effect of filler addition on the ILSS of composites', J. Colloid Interface Sci., 226, 60 (2000)
  16. F. Carmona and J. Ravier, 'Electrical properties and mesostructure of carbon black-filled polymers', Carbon, 40, 151 (2002) https://doi.org/10.1016/S0008-6223(01)00166-X