Filler-Elastomer Interactions. 10. Ozone Treatment on Interfacial Adhesion of Carbon Blacks/NBR Compounds

충전재-탄성체 상호작용. 10. 카본블랙/NBR 복합재료의 계면 접착에 미치는 오존처리의 영향

  • Cho, Ki-Sook (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Zaborski, M. (Institute of Polymers, Technical University of Lodz) ;
  • Slusarski, L. (Institute of Polymers, Technical University of Lodz) ;
  • Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 조기숙 (한국화학연구원 화학소재연구부) ;
  • ;
  • ;
  • 박수진 (한국화학연구원 화학소재연구부)
  • Published : 2003.06.30

Abstract

In this work, the influence of ozone treatment on surface properties of carbon black is investigated in terms of X-ray photoelectron spectroscopy (XPS) and contact angles. And their mechanical interfacial properties of the carbon black/acrylonitrile butadiene rubber (NBR) compounds are studied by the crosslink density and composite tearing energy ($G_{IIIC}$). As a result, it is found that the increasing of the ozone concentration leads to an increase of the introduction rate of oxygen-containing functional groups onto carbon black surfaces and to an increase of the surface free energy, resulting in improving both crosslink density and tearing energy ($G_{IIIC}$) of the compounds. The results can be explained by the fact that the oxygen-containing functional groups of carbon black surfaces make an increase of the degree of adhesion at interfaces between carbon blacks and rubber matrix.

본 연구에서는, 오존 처리에 의한 카본블랙의 표면특성을 X-ray photo-electron spectroscopy (XPS)와 접촉각을 통하여 알아보았으며, 카본블랙/acrylonitrile butadiene rubber (NBR) 복합재료의 기계적 물성은 가교밀도와 인열 에너지 ($G_{IIIC}$)를 측정하여 관찰하였다. 본 실험결과, 오존 처리에 의해 카본블랙 표면에 도입된 산소를 함유한 관능기가 카본블랙의 표면자유에너지를 증가시켰으며, 결과적으로 고무 복합재료의 가교밀도와 인열 에너지가 향상되었다. 이러한 결과는 오존처리에 의해 카본블랙 표면에 도입된 산소를 함유한 관능기가 카본블랙과 고무사이의 계면 결합력을 증가시켜 고무 복합재료의 기계적 물성을 향상시킨 것을 확인할 수 있었다.

Keywords

References

  1. X. Li, and K. Horita, 'Electrochemical characterization of carbon black subjected to RF oxygen plasma', Carbon, 38, 133 (2000) https://doi.org/10.1016/S0008-6223(99)00108-6
  2. S. J. Park and J. S. Kim, 'Modifications produced by electrochemical treatments on carbon blacks microstructures and mechanical interfacial properties', Carbon, 39, 2011 (2001) https://doi.org/10.1016/S0008-6223(01)00015-X
  3. S. Bandyopadhyay, P. P. De, D. K. Tripathy, and S. K. De, 'Influence of surface oxidation of carbon black on its interaction with nitrile rubbers', Polymer, 37, 353 (1996) https://doi.org/10.1016/0032-3861(96)81110-4
  4. S. J. Park and J.S. Kim, 'Role of chemically modified carbon black surfaces in enhancing interfacial adhesion between carbon black and rubber in a composite system', J. Colloid Interface Sci., 232, 311 (2000) https://doi.org/10.1006/jcis.2000.7160
  5. T. Takada, M Nakahara, H. Kumagai, and Y. Sanada, 'Surface modification and characterization of carbon black with oxygen plasma, Carbon, 34, 1087 (1996)
  6. J. M Pena, N. S. Allen, M Edge, C. M Liauw, S. R. Hoon, B. Valange, and R. I. Cherry, 'Analysis of radical content on carbon black pigments by electron spin resonance: influence of functionality, thermal treatment and adsorption of acidic and basic probes', Polym. Degrad. Stab., 71, 153 (2000) https://doi.org/10.1016/S0141-3910(00)00166-X
  7. S. J. Park' and M H. Kim, 'Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites', J. Mater. Sci., 35, 1901 (2000) https://doi.org/10.1023/A:1004754100310
  8. J. Rivera-Utrilla and M Sanchez-Polo, 'The role of dispersive and electrostatic interactions in the aque-ous phase adsorption of naphthalenesulphonic acids on ozone-treated activated carbons', Carbon, 40, 2685 (2002) https://doi.org/10.1016/S0008-6223(02)00182-3
  9. H. L. Chiang, C. P. Huang, and P. C. Chiang, 'The surface characteristics of activated carbon as affected by ozone and alkaline treatment', Chemosphere, 47, 257 (1994)
  10. X. Fu, W. Lu, and D. D. L. Chung, 'Improving the tensile properties of carbon fiber reinforced cement by ozone treatment of the fiber', Cern. Comer. Coupos., 26, 1485 (1996)
  11. X. Fu, W. Lu, and D. D. L. Chung, 'Ozone treatment of carbon fiber for reinforcing cement', Carbon, 36, 1337 (1998) https://doi.org/10.1016/S0008-6223(98)00115-8
  12. D. B. Mauhinney and J. T. Yates, 'FTIR study of the oxidation of amorphous carbon by ozone at 300 K -- Direct COOH formation', Carbon, 39, 1167 (2001) https://doi.org/10.1016/S0008-6223(00)00238-4
  13. M. Sanchez-Polo and J. Rivera-Utrilla, 'Reduction of solubilized multi-walled carbon nanotubes', Carbon, 41, 303 (2003) https://doi.org/10.1016/S0008-6223(02)00288-9
  14. R. Kosugi, S. Ichimura, A. Kurokawa, K. Koike, K. Fukuda, S. Suzuki, H. Okushi, S. Yoshida, and K. Arai, 'Effects of ozone treatment of 4H-SiC(0001) surface', Appl, Surf. sa, 159, 550 (2000)
  15. Adamson, A. W, 'Physical Chemistry of Surfaces', 5Ed., John Wiley, New York, Chap. 10, (1990)
  16. S. J. Park and J. S. Kim, 'Influence of plasma treatment on microstructures and acid-base surface energetics of nanostructured carbon black: N, plasma environment', J. Colloid Interface Sci., 244, 336 (2001) https://doi.org/10.1006/jcis.2001.7920
  17. Flory, P. J., J. Chem. Phys., 'Statistical mechanics of swelling of network structures', 18, 108 (1950)
  18. Gwaily, S. E., Badawy, M M, Hassan, H. H., and Madani, M, 'Influence of thermal aging on crosslinking density of boron carbide/natural rubber composites', Polyrn. Testing, 22, 3 (2003) https://doi.org/10.1016/S0142-9418(02)00024-7
  19. A. A. Griffith, 'The Phenomena of Rupture and Flow in Solids', Phil. Trans. R. Soc. London, A 221, 163 (1921)
  20. K. S. W Sing, D. H. Everett, R. A W. Haul, L. Moscou, R. A Pierotti, I. Rouquerol, and T. 'Repor ting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity', Siemieniewska, Pure Appl. Chem., 57, 603 (1985) https://doi.org/10.1351/pac198557040603