Investigation of Bottom Cracks in the Carbonated Poly(ethylene terephthalate) Bottle

  • Pae, You-Lee (ADMS Technology Chungnam) ;
  • Nah, Chang-Woon (Department of Polymer Science and Technology, School of Advanced Materials Engineering, Chonbuk National University) ;
  • Lyu, Min-Young (Department of Die and Mould Design, Institute of Precision Machinery Technology, Seoul National University of Technology)
  • Published : 2003.12.31

Abstract

The use of a petaloid design for the bottom of carbonated poly(ethylene terephthalate)(PET) bottles is widely spread. This study investigated the causes of bottom cracks. The tensile yield stress variations of PET according to the crystallinity and stretch ratio were examined, then the stretch ratio and strength in the bottom area of a blown bottle were analyzed. A crack test was also performed to observe the cracking phenomena. The distribution of the effective stress and maximum principal stress were both examined using computer simulation to seek the influence of the bottom design on crack. It was concluded that the bottom cracks occurred because of inadequate material strength due to the insufficient stretching of PET, plus the coarse design of a petaloid bottom. The stretch ratio at the bottom during bottle blowing should be higher than the strain hardening point of PET to produce enhanced mechanical strength. The cracks in the bottom of the PET bottles occurred through crazing below the yield stress. The maximum principal stress was higher in the valleys of the petaloid bottom than in the rest bottom area, and the maximum principal stress had a strong effect on the cracks.

Keywords

References

  1. C. Bonnebat, G. Roullet and A. 1. de Vries, Polym. Eng. Sci., 21, 189 (1981)
  2. L. Erwin, M A. Pollock and H. Gonzalez, Polym. Eng. Sci., 23, 826 (1983)
  3. M Cakmak, 1. E. Spruiell and 1. L. White, Polym. Eng. Sci., 24, 1390 (1984)
  4. M-Y. Lyu, H. C. Kim, 1. S. Lee and H. C. Shin, Conference on the Polymer Society of Korea, 25(1), 14 (2000)
  5. D. Brunnschweiler and J. Hearle, Polyester, The Textile Institute, Manchester, England (1993)
  6. H. G de Lorenzi and C. A. Taylor, Intern. Polym. Process., 8, 365 (1993)
  7. J. S. Foot and I. M Ward, 1. Materials Sci., 7, 367 (1972)
  8. V. Tanrattanakul, W. G. Perkins, F. L. Massey, A. Moet, A. Hiltner and E. Baer, 1. Materials Sci., 32, 4749 (1997)
  9. J. R. Kastelic and E. Baer, J. Macromol. Scl.-Phys., B7(4), 679 (1973)
  10. G. Marom, N. Konieczny and M Mushtakel, Polymer, 20, 1054 (1979)
  11. R. P. Kambour, Polymer Communications, 25, 130 (1984)
  12. S. A. Jabarin and E. A. Lofgren, Polym. Eng. Sci., 32, 146 (1992)
  13. E. J. Moskala, Polymer, 39, 675 (1998)
  14. M Wider, US Patent 5 009 801 (1991)
  15. B. Tekkanat and A. A. Kovacich, B. L. McKinney and W. H. Tiedemann, US Patent 5 001 935 (1991)
  16. C. E. Rossio and T. E. Anderson, US Patent 5 073 280 (1991)
  17. B. Tekkanat, A. A. Kovacich, B. L. Mckinney and W. H. Tiedemann, US Patent 5 001 935 (1991)
  18. J. H. Dumeleton, J. Polym. Sci., 6, 795 (1968)
  19. S. A. Jabarin, Polym. Eng. Sci., 32, 1341 (1992) https://doi.org/10.1002/pen.760321802
  20. F. Rietsch, Eur. Polym. J., 26, 1077 (1990)
  21. T. A. Osswald and G. Menges, 'Materials Science of Polymers for Engineers', Hanser, NY (1996)
  22. M-Y. Lyu, H. C. Kim, 1. S. Lee and H. C. Shin, Intern. Polym. Process., in press
  23. E. G. Thosen C. T. Yang and S. Kobayashi, 'Me-chanics of Plastic Deformation in Metal Processing', Macmillan, NY(1965)
  24. A. M Donald and E. 1. Kramer, J. Materials Sci.,17, 1871 (1982)
  25. N. G. McCrun, C. P. Buckley and C. B. Bucknall, 'Principles of Polymer Enginnering', 2$2^{nd}$ Ed., Oxford University Press, NY (1997)
  26. S. S. Sternstein, L. Ongchin and A. Silverman, Applied Polymer Symposia, No.7, 175 (1968)