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Sequential Percentile Estimation for Sequential Steady-State Simulation

JongSuk R. Lee'

- HaeDuck J. Jeong'

ABSTRACT

Percentiles are convenient measures of the entire range of values of simulation outputs. However, unlike means and standard deviations, the
observations have to be stored since calculation of percentiles requires several passes through the data. Thus, percentile estimation (PE) requires
a large amount of computer storage and computation time. The best possible computation time to sort n observations is (O(nlog;n)), and
memory proportional to n is required to store sorted values in order to find a given order statistic. Several approaches for estimating percentiles
in RS (regenerative simulation) and non-RS, which can avoid difficulties of PE, have been proposed in [11, 12, 211. In this paper, we implemented
these three approaches known as : linear PE, batching PE, and spectral P? PE in the context of sequential steady-state simulation. Numerical
results of coverage analysis of these three PE approaches are presented.

IINE : &xF AIZHI0|M(Sequential Simulation), ¥#2|s &3 (Percentile Estimation), 4= H|OIE| 24 ¥ (Regenerative Out-
put Data Analysis), i AlZ0|4(Regenerative Simulation)

1. Introduction

In simulating a stochastic system, such as a queueing or
an inventory system, the simulator is frequently more con-
cerned with extreme performance of the system than with
long run average. As opposed to averages, percentiles can
account for extreme behaviour of the system. Percentiles are
convenient measures of the entire range of values of simul-
ation outputs. Analysts find percentiles particularly useful
in estimating reasonable capacities for facilities, comparing

the overall performance of alternative designs or establishing
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minimum standards. Therefore, from a practical point of
view, the problem of estimating percentiles is quite impor-
tant.

Let X4, -, X, -, Xx be a sample of independent and
identically distributed(ii.d) random variables from a conti-
nuous distribution Fx(x) with a probability density function

Fx(x). For 0 < p< 1, let

x,= inf{x : Fx(x) 2 p} = F 3'(p),

where F ' (p) is the inverse of Fy (x) with derivative
1/fx (x,). The quantity x, is the 100p™ percentile of F(x).
Let Xy < -+ < X, < - < X (w be the order stati-

stics corresponding to the sample. The usual non-parametric
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point estimator of x, is the 100p™ sample percentile
i\bzXHNp+1,‘n 0<CpCi

where | z | denotes the integral part of z.

The problem with using x, as an estimator is that the
sample sizes required for adequate precision are prohibitively
large. Both sorting times and memory sizes are then un-
realistic. A measure of the inflation of sample size over the
independence case has been investigated by Blomgqvist [1].
Unlike means and standard deviations, the observations have
to be stored since calculation of percentiles requires several
passes through the data. Thus, percentile estimation (PE)
requires a large amount of computer storage and very long
runs for securing the credibility of the final results. It makes
the amount of computation time very large. The best pos—

sible computation time to sort n observations is O(nlogyn),

and memory proportional to n is required to store sorted
values in order to find a given order statistic. For example,
extreme percentiles of the M/M/1/o queueing system with
traffic intensity o = 0.9 requires a sample size of roughly
500,000 customers to estimate the 99t percentile of the
waiting time distribution to within plus or minus 10% ac-
curacy. For the 99.9™ percentile, the required sample size is
approximately 23,000,000. Clearly, storing and sorting the
entire sequence is impractical in such a case. Actually, to
produce an order-statistic point estimate of x , requires sto-
ring the largest (1— p)/N values of the sequence. However,
this ordering must be dynamically maintained as the seq-
uence is generated, a computationally expensive operation
and an additional storage are also required to estimate the
variance. The above results are derived from <Table 8> of
Blomqvist [1] by Heidelberger and Lewis [9].

Several approaches for estimating percentiles in RS and
non-RS, which can avoid the above difficulties, have been
proposed in [11, 12, 21]. These three approaches are origi-
nally developed for traditional (non sequential) procedure.

Our motivation is finding the robust estimator of percen-
tiles in sequential steady-state simulation. In this paper we
discuss three approaches known as linear PE and batching
PE for RS, and spectral P* PE for non-RS, in the context
of sequential steady-state simulation. In Section 2 detailed
sequential PE approaches of RS, which are linear PE and
batching PE, are discussed. In Section 3 detailed sequential
PE approach of non-RS, which is spectral P* PE, is dis-

cussed. In Section 4 numerical results of coverage analysis

of three PE approaches are presented and conclusions are

made in Section 5.

2. Sequential PE Approaches of RS

The regenerative method (RM) of simulation, first sugge-
sted by Cox and Smith [2], for analysis of observations
collected from a regenerative process {X(¢) : ¢ = 0} has been
systematically developed by a number of authors [3-5]. The
regenerative approach is motivated by the fact that many
stochastic systems have the property of starting afresh pro-
babilistically from time to time. The central idea of the RM
is to exploit the fact that, when {X(#) : ¢ =0} is a regen-
erative process, random variables between successive rege-
neration points are ii.d. thus it can circumvent the autocor-
relation problem in estimates. Iglehart [11], Moore [15], Seila
[21], and Heidelberger and Lewis [9] have given special
methods for processes {X ,} with regenerative structure, i.e.
processes for which there exist random time points at which
the process restarts probabilistically. An example is the
waiting time process {W,} in M/M/1/ e queueing system
which regenerates every time a customer arrives to find the
queue empty, so that the waiting time of that customer is
Z€ro.

Detailed comparisons of Iglehart, Seila and Moore’s appro-
aches for PEs in fixed sample size approach are in [22].
Three methods mentioned differ significantly. Each has ad-
vantages and disadvantages, and the appropriate method will
depend on the specific application. The summary of three

methods’ comparisons is as following <Table 1>.

{Table 1> Comparisons of Three PE Approaches

Methods Stat{stical Compul_:ational Merflory
Precision Efficiency Efficiency
Igiehart Moderate High Moderate
Seila Moderate High Moderate
Moore High Low Low

These three PE approaches for RS use fixed sample size
analysis method even though sequential analysis of simul-
ation output is generally accepted as the most efficient way
for securing representativeness of samples of collected ob-
servations. In this paper, we consider two approaches, which
are Iglehart's (we will call it linear) and Seild's (we will
call it batching) methods for sequential PE because Moore's

approach does not consider memory and computing time ef-



ficiency as we can see the <Table 1>

Among few possible criteria for stopping the simulation,
probably the most commonly used one is based on the
relative half width of the confidence interval at a given

confidence level (1- o) defined as the ratio

4,
= —— 0<e<1; 1
X (n)
where X (n) is the estimation of mean #, of an analyzed
process from the sequence of collected observations x;, x;
-+, x, and 4, is the half width of the confidence interval

for the estimator. It is well known that if observations

x1. X9, ***, %, can be regarded as realizations of independent
and normally distributed random variables X, X, ---, X,,

then
A= tyyy-ap O [Y(n)],
where

(x;— X (m))
izl n(n—1)

M=

sl xmw] =

is the (unbiased) estimator of the variance of X (#), and
tn-11-q2 1s the (1- a) percentile of the ¢ —distribution with
(n-1) degrees of freedom.

The ratio of Equation (1) is called the relative precision
of the confidence interval. The simulation experiment is
stopped at the first checkpoint for which ¢ < e .., Where
€ max 1S the required limit relative precision of the results

at the 100(1- @)% confidence level, 0 < € mx < 1.

2.1 Sequential PE using Linear Approach

The linear approach has originally been developed for the
fixed sample size simulation by Iglehart [11]. In this paper,
we modified the linear approach for sequential PE. First of
all, the linear approach for sequential PE requires to first
specify a grid of h+1 points gy < g, < g2 < - < g, s0 that all
observations lie between g, and g,. We used 21 grid points
spaced 0.2 units which is reasonable for PE (but not for
extreme PE) because all theoretical PE values of M/M/1/ «
queueing system are in grids. Next, this method estimates
the cumulative distribution function only at grid points.
Then, it interpolates linearly between these estimates to find
the percentile estimate until the steady-state parameter has

been estimated with the required relative precision.
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Let us consider how the percentile @, would be estimated
in the course of a simulation experiment by collecting ob-
servations in % hins, where an observation is put into bin
i if the observation is between grid point g;_, and g, Then,

having simulated # RCs, we would accumulate the number
of observations in each bin. If w,(¢), i=1,-+,4, is the total
number of observations in bin ¢ during # RCs, then the em-
pirical cumulative distribution function of the random vari-
able X, F,(-), estimated after » RCs would jump by w,(7)

/8, at grid point g;, where 8, is the total number of ob-
servations collected during » RCs. Then, a new distribution
function 7, (g,) at grid point g, is estimated by linear in-
terpolation between F,(g;) and F,(g;+1). Next, the sample

percentile @(n) after » RCs would be estimated by taking

Q(m=F,! (g).

The variance of this estimator is estimated as

;\2(@(%)) = t/f\z(y,-,-(n)) —2F(g;)cov(y i (n), a;(n)

+ F2(g) 0% (ay(m),

where v;{n) and a(n) are the sum and the number of
ohservations collected for bin 7 in the ;™ RC over » RCs,
respectively [11]. Here, ?( -) and cov( -, -) are estima-
tes of the variance and covariance, and F,(g;) is the em-
pirical cumulative distribution function of the random vari-
able X after » RCs at grid point g;.

A 100(1 —a)% CI for the percentile @, can be obtained by
dividing 7(n) £ (s(#) tu-1.1-a2)/ (@ (W 7}, Where £,-1 -,
for 0< @< 1, is the upper (1-—/2) critical point from the
Student ¢ -distribution with degrees of freedom »—1, with

the slope of F,( @, (»)) [11]. Then, a 100(1 —2% CI for the
percentile @, is given by

— fdﬁl—a/z/&(@(n))

G, (n) + 1=z ?
T TR (@

where 4, - 49 1S the (1 —/2) percentile of the ¢-distribu-
tion with d@f = n—1 degrees of freedom, F'(Q, () is estima-

ted by w,( @,(n)+ 1)/ 4, which is the slope of F.( Q,(n),

n h
and a=1/n /Z:]( Z}a,,(n)) .
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2.2 Sequential PE using Batching Approach

Batching approach also has been originally developed for
fixed sample size simulation by Seila [21]. In this paper, we
modified the batching approach for sequential PE. First, the
batching approach for sequential PE groups data from the
RCs into batches and computes sample percentiles by regar-
ding as the batches as a set of independent, identically dis-
tributed observations. Before applying this method, the ana-
lysts must specify the batch size (the number of RCs in a
batch) and in this paper we initially considered the batch
size of & = 50 to test the feasibility of this approach.

Batching method groups m cycles!’ in each batch. Within
each batch, a percentile estimate is computed using the jack-
knifed sample percentile until the steady-state parameter has
been estimated with the required relative precision.

The batching method groups each batch of b RCs, and
the three sample percentile estimates are computed from each
batch to incorporate a two—fold jackknife procedure in order
to reduce bias of the percentile estimators. One sample perc-
entile estimate is computed from all observations collected
during a batch, and the other two sample percentile estimates

are computed from observations of the first and second half
RCs of a batch. Assume that bis even, and let Q,(5,7), @,
(b/2,14)), and /Q\,,(b/ 2,13) be the estimates of @, computed
from the b RCs in the /™ batch, and the first and second
b/2 RCs in the i™ batch using the ordinary percentile
estimator?), respectively. Then, the jackknifed batch p

percentile is

J(Go (b, 1)) = 2@(@,1’)—71<@(b/2,i,>

+ Qb 2.1)).

The sequence {J( Q,(b,i)), i=1,2,--,7} over r batches
consists of r iid. random variables. Let 7( Q, (b, 7)) and

P (J (?,,( b, 7))) denote the mean and variance of such ja-

ckknifed percentile estimators, i.e.,

7

7CQ, (4, r>>:~i SHQ i)

i=1

and

1) A regenerative cycle is the portion of the process between
two successive regenerative points, at which the process
starts over probabilistically.

2) The sample percentile is obtained from the order statistic.

7 UCQ M = = UG 5.
—JCQ, (b, P

Then, a 100(1—a)% CI for the percentile @, is given by

_ Fapioan 0(TCQ, (b 7))
JCQ, (b, 7)) + —L2 = ! ,

where £ 41— 42 1S the (1—a/ 2) percentile of the ¢ ~distribu-

tion with df = »—1 degrees of freedom.

3. Sequential PE Approaches of Non-RS

A PE approach to overcome the typical difficulties of PE
in non-RS has been proposed by Jain & Chlamtac [12]. This
PE approach is based on P? (Piecewise-Parabolic) formula.
The detailed discussion of P? formula can be found in [12].
PE using P z algorithm originally developed for fixed sample
size procedure and non-RS.

The P? algorithm consists of maintaining five markers :
the minimum, the 100p/2%, 100p™, and 100(1+p)/2" percen-
tiles, and the maximum. The markers are numbered 1 to 5.
Markers 2 and 4 are also called middle markers because they
are midway between the 100p™ percentile (marker 3) and
the extremes. The y value (height) of each marker is equal
to the corresponding percentile value, and its x value is equal
to the number of observations that are less than or equal
to the marker. The marker heights are the current estimates
of the percentiles, and these estimates are updated after
every observation. As a new observation comes in, it is com-
pared with the markers, and all markers higher than the
observation are moved one position to the right. If a maker
18 off to the left or right of its ideal location by more than
one, then the y and x values are adjusted using a P? formula.
Pseudocodes of P? algorithm and an example calculation
using P ? algorithm are in [12].

PE using P z algorithm solves the storage problem by cal-
culating percentiles using a piecewise-parabolic formula dy-
namically as the observations are generated. The observa-
tions are not stored, instead, a few statistical counters are
maintained which help refine the estimate. Therefore, PE
using P ? algorithm has a very small storage requirement
regardless of the number of observations and a small com-
puting time because no sorting is required.

Extended P* approach for PE, which is extended version
of Jain and Chlamtac’s approach, has been proposed by Raa-



tikainen [18] and this extended P approach simultaneously
estimates several percentiles without storing and sorting the
observations in fixed sample size procedure. Sequential pro-
cedure for simultaneous estimation of several percentiles in
non-RS has also been proposed in [19]. This sequential ap-
proach uses the extended P’ algorithm to estimate the per-
centiles and the variances of the percentile estimates are
estimated using SA/HW method (Spectral Analysis in its
version proposed by Heidelberger and Welch [10D). This
approach uses the random length of uniform distribution
over the interval [1025, 2048] for deciding the length of the
initial transient period.

3.1 Sequential PE using Spectral P2 Approach

In this paper, we consider sequential procedure for a single
PE in non-RS and we will call it spectral P approach. P’
algorithm proposed by Jain & Chlamtac was used for PE
and the variances of the percentile estimates are estimated
using the SA/HW method. However, the method for detec-
ting the initial transient period used here are based on those
described in [16]. The sequential procedure detects the initial
transient period by the stationarity test proposed by Schru-
ben et al. [23]. It tests the hypothesis that sufficient numbers
of initial transient data have been discarded.

Many heuristic rules are discussed in [16], and one of
heuristic rules proposed by Fishman [7], which is the initial
transient period is over after n, observations if the time
series xj xs -, %, Crosses the mean X(ny) k times, is
used for detecting the initial transient period. In Gafarian et
al. [8], k = 25 was recommended for M/M/1/ > queueing
systems so we assume k = 25 for simulation experiments.
Detailed pseudocodes of the sequential procedure for detec—
ting the initial transient period using Fishman's heuristic rule
are in [16]. Detailed methods and pseudocodes of the sequen-
tial procedure for testing the required precision of results
using the SA/HW method are also in [16].

The 100p” percentile which is calculated by the P* al-
gorithm (detailed procedure of this method in [12]) would
be defined by @,. The P? formula for the height, which is
a percentile value, is actually an approximation of the inverse

of the empirical cumulative distribution function,
F 1y =ay’+by+e

The variance of the percentile estimate Q,(n) is esti-

mated by using the formula given in [19]. As the number

XA ASH0Idg 21T =Xl Percentiie =F0I &t A7 1029

of observations becomes large, the variance of b\,,(n) can

be approximated by

S(0; Q,(»)

0 Q,(w) = ————"1——
nfE(Q,(n)

where S(0; Q,(#)) is the spectral density at frequency 0,
estimated using the SA/HW method proposed by Heidel-
berger and Welch [10], and ¥ ( @, (»)) is the empirical den-

sity function, approximated by
TCQ,0 = (b +2a F(Q,(m) ™!

since @,(n) is an approximation of the inverse of the

empirical cumulative distribution function, F ™! (n) = an®

+ bn+ ¢ [19].
A 100(1—-a)% CI for the percentile @, is given by

Laprma 0@, (M)
\/7 y

E)\,,(n)i

where 4,42 is the (1—a/2) percentile of the t-distri-
bution with degrees of freedom df = 7.

4. Numerical Results

Implementations of the batching PE approach, the linear
PE approach in RS and spectral P’ approach in non-RS for
analysing sequential PE of output data have been discussed
in the previous section.

The robustness of any method can be usually measured

by the coverage of confidence intervals, defined as the
proportion p with which the number of the final confidence
interval (3 —4, » +4) contains the true value p. An es—

timator of variance ? used for determining the confidence
interval of the point estimate is considered as valid, ie.
producing valid 100(1 — @)% confidence intervals of the point
estimate, if the upper bound of the confidence interval of the

point estimate 7 equals at least (1—a) [20]. Coverage an-
alysis, however, is to analytically intractable systems, since
the theoretical value of the interesting parameter has to be
known. Because of this reason, in this paper we estimated
percentiles of response times of M/M/1/ ¢ queueing system.

All numerical results in this paper were obtained by

stopping simulation experiments when the final steady—state
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results reached a required precision of 5% or less, at the
0.95 confidence level and 200 or more bad confidence inter-
vals (to secure representativeness in the analysed data) had
been collected. All results were also filtered of strangely
short simulation runs to secure the statistical properties of
interval estimators after 200 bad confidence intervals are
collected. The filtering of short simulation runs has improved
estimates of coverage for sequential PE in RS except a case.
The results of traditional fixed sample size approach with
200 replications are shown in (Figure 2), (Figure 4), and
(Figure 6).

Sequential coverage analysis (using F approximation [13,
14], which gives much narrower confidence intervals,) for
sequential PE approaches in RS and non-RS on a single
processor under MRIP (Multiple Replications In Parallel)
scenario of AKAROA [6,17] are experimented at the 90"
percentile.

(Figure 1) and (Figure 3) depict the results obtained from
linear PE and batching PE approaches in RS, respectively
and (Figure 5) is from spectral P ? PE approach in non-RS.
As we can see, batching PE approach in RS gives much
stable coverage except traffic intensity 0.9.
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(Figure 1) Coverage Analysis of Linear PE in RS Using £ Approxi-
mation in M/M/1/ e Queueing System (P = 1 &
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<Table 2> shows the comparison of three PE approaches
with the ordinary PE approach regarding the computational
time and the required storage. The computational time and
the required storage in the ordinary method clearly depend
on the number of observations ». However, the other metho-
ds do not depend on the number of observations. They only
depend on the pre-defined number of bin, %, and the batch
size, b, As we can see the computational time and the re-

quired storage are significantly reduced.

(Table 2> Comparison of Three PE Approaches

Ordinary PE| Linear PE | Batching PE|Spectral P’

Time O(nlogzn) Oflc) 0(c) Ofc)

Storage n h+1 b 5

5. Conclusions

For large number of observations, PE becomes impractical
to store and sort the entire sequences. Physical memory
limitations of computers used for PE make large numbers
of replications impossible, and in others, the shuffling of
virtual memory pages slow down the simulation conside-
rably. Linear and batching PE approaches for RS and P?
PE approach for non-RS can resolve the problems related
with PE but these are not originally developed for sequential
simulation. Run length control of simulation is very impor-
tant as the most efficient way for securing simulation results
statistically. Sequential stopping rules, which control the re-
lative width of an estimated confidence interval, can be used
in conjunction with RS and non-RS. Therefore, we proposed
three PE approaches for RS and non-RS in sequential ste-
ady-state simulation: linear PE, batching PE, and spectral
P’ PE. Many other aspects for sequential PE in RS and
non-RS will have to be carefully studied and tested with
a number of different simulation models before these proce-

dures can be safely used in simulation practice.
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