Characteristics of Several Bacterial Isolates Capable of Degrading Chloroaliphatic Compounds via Hydrolytic Dechlorination

  • Song, Ji-Sook (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Lee, Dong-Hun (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Lee, Kyoung (Department of Microbiology, Changwon National University) ;
  • Kim, Chi-Kyung (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University)
  • Published : 2003.01.01

Abstract

Haloaliphatic hydrocarbons have been widely used as solvents and ingredients of pesticides and herbicides. However, when these compounds contaminate the environment, they can be very hazardous to animals and humans because of their potential toxicity and carcinogenicity. Therefore, lots of studies have been made for microbial degradation of those pollutant chemicals. In this study, 11 bacterial strains capable of degrading 1,2-dichloroethane (1,2-DCA), 2-chloropropionic acid (2-CPA), 2,3-dichloropropionic acid (2,3-DCPA), and 2-monochloroacetic acid (2-MCA) by hydrolytic dechlorination under aerobic conditions were isolated from wastewaters and rice paddy soil samples. Their morphological and biochemical characteristics and their degradation capabilities of haloaliphatic hydrocarbons were examined. On the basis of the 16S rDNA sequences, 8 different kinds of microbial species, including Pseudomonas plecoglossicida, Xanthobacter flavus, Ralstonia eutropha, were identified. All of the isolated strains can degrade MCA. In particular, strains UE-2 and UE-15 degraded 1,2-DCA, and strain CA-11 degraded 2,3-DCPA, which are hardly degraded by other strains.

Keywords

References

  1. Bader, R. and T. Leisinger. 1994. Isolation and characterization of the Methylophilus sp. strain DM11 gene encoding dichloromethane dehalogenase/glutathione S-transferase. J. Bacteriol. 176, 3466-3473.
  2. Bergman, J.G. and J. Sanik. 1957. Determination of trace amounts of chloride in naphtha. Anal. Chem. 29, 241-243.
  3. Chae, J.C. and C.K. Kim. 1997. Dechlorination of 4-chlorobenzoate by Pseudomonas sp. DJ-12. J. Microbiol. 35, 290-294.
  4. Chae, J.C., Y. Kim, Y.C. Kim, G.J. Zylstra, and C.K. Kim. 2000. Genetic structure and functional implication of the fcb gene cluster for hydrolytic dechlorination of 4-chlorobenzoate from Pseudomonas sp. DJ-12. Gene 258, 109-116.
  5. Fetzner, S. and F. Lingens. 1994. Bacterial dehalogenase: biochemistry, genetics, and biotechnological applications. Microbiol. Rev. 58, 641-685.
  6. Fode-Vaughan, K.A., C.F. Wimpee, C.C. Remsen, and M.L. Collins. 2001. Detection of bacteria in environmental samples by direct-PCR without DNA extraction. Biotechniques 31, 598-600.
  7. Hardman, D.J., P.C. Gowland, and J.H. Slater. 1986. Large plasmids from soil bacteria enriched on halogenated alkanoic acids. Appl. Environ. Microbiol. 51, 44-51.
  8. Hasan, A.K.M.Q., H. Takada, H. Koshikawa, J. Liu, T. Kurihara, N. Esaki, and K. Soda. 1994. Two kinds of 2-halo acid dehalogenases from Pseudomonas sp. YL induced by 2-chloroacrylate and 2-chloropropionate. Biosci. Biotech. Biochem. 58, 1599-1602.
  9. Hay, A.G., P.M. Dees, and G. S. Sayler. 2001. Growth of a bacterial consortium on triclosan. FEMS Microbiol. Ecol. 36, 105-112.
  10. Janssen, D.B., J.E. Oppentocht, and G.J. Poelarends. 2001. Microbial dehalogenation. Curr. Opin. Biotechnol. 12, 254-258.
  11. Janssen, D.B., F. Pries, J. Van Der Ploeg, B. Kazemier, P. Terpstra, and B. Witholt. 1989. Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J. Bacteriol. 171, 6791-6799.
  12. Janssen, D.B., A. Scheper, L. Dijkhuizen, and B. Witholt. 1985. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49, 673-677.
  13. Lee, W.S., C.S. Park, J.E. Kim, B.D. Yoon, and H.M. Oh. 2002. Characterizztion of TCE-degrading bacteria and their application to wastewater treatment. J. Microbiol. Biotechnol. 12, 569-575.
  14. Lee, S.Y., M.S. Song, K.M. You, B.H. Kim, S.H. Bang, I.S. Lee, C.K. Kim, and Y.K. Park. 2002. Monitoring 4-chlorobiphenyldegrading bacteria in soil microcosms by competitive quantitative PCR. J. Microbiol. 40, 274-281.
  15. Leisinger, T. 1996. Biodegradation of chlorinated aliphatic compounds. Curr. Opin. Biotechnol. 7, 295-300.
  16. Magnuson, J.K., M.F. Romine, D.R. Burris, and M.T. Kingsley. 2000. Trichloroethene Reductive Dehalogenase from Dehalococcoides ethenogens: Sequence of tceA and subxtrate range characterization. Appl. Environ. Microbiol. 66, 5141-5147.
  17. Manoharan, A., R. Pai, V. Shankar, K. Thomas, and M.K. Lalitha. 2003. Comparison of disc diffusion & E test methods with agar dilution for antimicrobial susceptibility testing of Haemophilus influemzae. Ind. J. Med. Res. 117, 81-87.
  18. Maymó-Gatell, X., T. Anguish, and S.H. Zinder. 1999. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by 'Dehalococcoides ethenogens' 195. Appl. Environ. Microbiol. 65, 3108-3113.
  19. McConell, G., D.M. Ferguson, and C.R. Pearson. 1975. Chlorinated hydrocarbons and the environment. Endeavour 34, 34-18.
  20. Mergeay, M., S. Monchy, T. Vallaeys, V. Auquier, A. Benotmane, P. Bertin, S. Taghavi, J. Dunn, D. van der Lelie, and R. Wattiez. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27, 385-410.
  21. Mohn, W.W. and J.M. Tiedje. 1992. Anaerobic biodegradation of chlorinated benzoates. Microbiol. Rev. 56, 482-501.
  22. Morgan, P. and R.J. Watkinson. 1989. Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds. FEMS Microbiol. Lett. 63, 277-300.
  23. Nardi-Dei, V., T. Kurihara, T. Okamura, J. Liu, H. Koshikawa, H. Ozaki, Y. Terashima, and N. Esaki. 1994. Comparative studies of gene encoding thermostable L-2-haloacid dehalogenase from Pseudomonas sp. strain YL, other dehalogenase, and two related hypothetical proteins from Escherichia coli. Appl. Environ. Microbiol. 60, 3375-3380.
  24. Ng, L.K., R. Sherburne, D.E. Taylor, and M.E. Stiles. 1985. Morphological forms and viability of Campylobacter species studied by electron microscopy. J. Bacteriol. 164, 338-343.
  25. Olaniran, A.O., G.O. Babalola, and A.I. Okoh. 2001. Aerobic dehalogenation potentials of four bacterial species isolated from soil and sewage sludge. Chemosphere 45, 45-50.
  26. Schneider, B., R. Müller, R. Frank, and F. Lingens. 1991. Complete nucleotide sequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases from Pseudomonas sp. strain CBS3. J. Bacteriol. 173, 1530-1535.
  27. Shin, S.-K., J.-E. Kim, G.-S. Kwon, J.-W. Kwon, E.-T. Oh, J.-S. So, and S.-C. Koh. 2003. Isolation and identification of a pentachloronitrobenzene (PCNB) degrading bacterium Alcaligenes xylosoxidans PCNB-2 from agricultural soil. J. Microbiol. 41, 165-168.
  28. Tsang, J.S.H. and L. Sam. 1999. Cloning and chracterization of a cryptic haloacid dehalogenase from Burkholderia cepacia MBA4. J. Bacteriol. 181, 6003-6009.
  29. van der Ploeg, J., G. van Hall, and D.B. Janssen. 1991. Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene. J. Bacteriol. 173, 7925-7933.
  30. Wiegel, J.K.W. and H.G. Schlegel. 1984. Genus Xanthobacter, p.325-333. In N. G. Krieg, and J. G. Holt (ed.), Bergeys Manual of Systematic Bacteriology, vol. 1., Williams & Wilkins, Baltimore, USA.