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Accurate Multi-level Schemes for Advection and Acoustics

C. W. Kim

A non-dissipative and very accurate one-dimensional upwind leapfrog method is extended to

higher-order and multi-dimensional advection and acoustic equations. The higher-order versions

are developed by extending the stencils in space and time. The schemes are then successfully

applied to the classical test cases for advection and acoustics.
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1. Introduction

Accurate numerical solutions of the scalar
advection and acoustic equations are required
in many contexts. Accuracy can be sought by
several approaches. The simplest is to adopt
increasingly higher-order interpolation, such as
spectral analysis. This tends to produce very
especially if the
temporal accuracy is obtained, as it often is,

broad numerical stencils,
integration method
such as Runge-Kutta. Another way to increase
the data available for interpolation is to include
information from more than one time-step.
The simplest example is the leapfrog method,
which is naturally non-dissipative and energy
preserving. Leapfrog methods, however, have a

from higher-order time

poor reputation because spurious oscillations
the method often
to boundary

are pronounced, and
responds unstably
mesh irregularity, or non-linear terms.

conditions,

A variant of the leapfrog method was pro-
posed by Iserles[1] for the one-dimensional
(1D) advection equation, using stencil having
only point symmetry and therefore the capa-
bility of reflecting an upwind bias. These have
theoretical advantages over regular leapfrog
methods, having much reduced phase error,
more compact stencils and only positive group
velocities. Therefore, the 1D equation has been
system of

extended to multi-dimensional

Maxwell’s  equations,
elastodynamics) by P. L. Roel2]. In this paper,
the 2D advection problem and acoustics are

focused.

equations  (acoustics,

In Section 2, we briefly review the ideas of

Iserles concerning three-level

together with

schemes,
methods of
introducing additional information, such as the

alternative

schemes. The
power of methods are
remarkable, particularly those having 4th-order
accuracy. The dth-order three-level scheme

four-level and Hermitian

resolving these

yields less than 1% error with only four grid
points per wavelength and less than 0.1% with
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(c) regular leapfrog scheme
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(d) upwind leapfrog scheme

Fig. 1 Numerical results of four different numerical scheme. Solid line: Numerical solution, Dotted
line : Analytic solution. Courant No., ¥=0.4. Grid points/wavelength, N=38

six points. Both four-level upwind leapfrog
and Hermitian schemes yield less than 1%
three grid points per
wavelength and less than 0.3% with five
points. Therefore, these higher-order schemes

error with only

are able to update the solution precisely for
long integration times.

In Section 3, we discuss the strategies for
extending these advection schemes to multi-
dimensional advection and acoustic equations.
The extension is not unique, but we follow
heuristic principles of maintaining symmetry
and minimizing the stencil. Both three-level
and four-level methods are treated. Finally a
experiments  are

couple of numerical

demonstrated.

2. One-Dimensional Advection

The 1D advection equation for an unknown
scalar u(z, t), Ou/Ot+a -0u/0z =0 advects
the given profile at the speed, @ Before any
detailed
scheme, a few

analysis of the upwind leapfrog

classical techniques are
compared through simple numerical experiment.
The left boundary of the computational domain
is excited by a sinusoidal function which is

propagated to the right-hand at the speed, a

without any dissipation. Fig. 1 compares four
different numerical test results with eight grid
points per wavelength(N=38). Fig. 1(a)
presents the result of the 2nd-order Lax-
Wendroff scheme. After travelling only one
wavelength (ten iterations), it begins to show
some deviation from the analytic solution
(dotted  line) and substantial
dispersion and  dissipation
travelling ten wavelengths(200 iterations). Fig.
1(b) is updated by the simple upwind scheme

produces
errors  after

which has a huge dissipation error and shows
that most of the amplitude is dissipated after
travelling three wavelengths. Neither of these
schemes is suitable for accurately simulating
advection, and would require more grid points
to get a reasonable result.

The third picture, Fig. 1(c), is obtained with
the regular leapfrog scheme, which uses three
level and is time-reversible(Fig. 3). Therefore,
it has no dissipation and maintains the original
amplitude. However, it has a large dispersion
error and still requires a lot more grid to get
reasonable phase resolution. The last picture
(Fig. 1(d)) shows the result of the upwind
leapfrog scheme proposed by Iserles[l]. It is
again time-reversible and keeps the original
without any dissipation.

wave amplitude
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(a) 2nd-order scheme
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(c) time-extended 4th-order scheme

Fig. 2 Numerical results of four upwind leapfrog schemes. Solid line and circle :

(b) space-extended 4th-order scheme

1 ———— T —T1—r

05 1

. X N . X X
) 20 40 60 80 100
(d) space/time extended sixth-order scheme
Nu-merical

solution. Dotted line and star: Analytic solution. Courant No, v (a)(b)=04, (c),(d)=0.2.

Grid points/wavelength, N= 3.

Furthermore the biased stencil maintains the
phase very precisely.
Another experiment,
demonstrated the accuracy of the 2nd-, 4th-
and 6th-order upwind leapfrog methods on a
coarse grid, N=3. Although the analytic solu-
tion, marked by star(*) and dotted line, is a
smooth sine wave, the interpolation of the
analytic solution appears discrete. The result of
the 2nd-order scheme shown in Fig. 2(a)
begins to show a dispersion error after
travelling one wavelength. Two 4th-order
schemes developed by extending the 2nd-order
scheme in space and time, demonstrate the
results in Fig. 2(b) and 2(c). They preserve
the phase precisely. However, to graphical
resolution, the method using the time-extended
stencil is more accurate than the one extended
in space. As heuristic reason for it being
better than the stencil extended in space is
that it has a
characteristic coordinate — at. The 6th-order

smaller extent in the

scheme based on the stencil shown in Fig.
4(c) preserves the phase with extraordinary
accuracy for such an under-resolved grid. In

shown in Fig. 2

n-1 n-1

Fig. 3 Stencils of leapfrog type schemes.
left : regular leapfrog, right : upwind
leapfrog

what follows, we successfully extend both
4th-order methods to 2D grids; extension of
the corresponding sixth-order version remains
to be achieved.

2.1. 2nd-order upwind leapfrog scheme

For positive wave speed, ¢ >0, the regular
leapfrog and upwind leapfrog schemes employ
the stencils of Fig. 3 and are time-reversible.

Regular leapfrog :

n+l __ n—1 n n
w't =" —w(uh,— ), ()

Upwind leapfrog :
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(a) Regular Leapfrog (b) Upwind Leapfrog

Fig. 4 Phase properties of 2nd order leap-frog

scheme
w =l (- 20) () -y, @
where V= a,At/Ax.
For the analysis of two schemes, von

Neumann analysis is performed. The results
are presented as contour plots of equal phase
error, on diagrams where the axes are ¥(= 0)
and N(= 2). The results for the regular and
upwind leapfrog scheme are shown in Fig. 4

2.2 Higher-order upwind leapfrog

To get higher-order accuracy, more data is
necessary beyond that used in the 2nd-order
the
information, the stencil is extended in space or
time. The first is to extend the stencil of the
2nd-order scheme in space, as shown in Fig.

upwind leapfrog scheme. To provide

5(a) but this makes the scheme less compact
and is difficult to apply at the boundary. The
second is to stretch the stencil in time by
(Fig.
5(b)). This results in a very accurate scheme
that is exact both when ¥»=1/2 and when
v=1/3 However, this scheme is unstable for
v>1/2. Another method is to combine these
methods. Fig. 5(c) shows the stencil of the
sixth-order scheme obtained by extending the

including data from time level n—2

(a) (b) (c)

Fig. 5 Stencils of the 4th- and sixth-order
upwind leapfrog schemes. (a) space-ex-
tended 4th-order, (b) time-extended 4t-
h-order, (c) space~ and time-extended
sixth order.

2nd-order stencil in space and time.

Space-extended 4th order scheme, Fig 5(a)

ot ety (v+ Q@z} 5u+2)( W)

(3)

B V(y—l )6(21/'_‘11 (uj'_“_l—u;iz)

Time-extended 4th order scheme, Fig. 5(b)

w' =4 2(1 - 3r ) (" — Y

L A=2)(1=3v) #251511#3") (W — ™)

(4)

Time/Space-extended 6th-order scheme, Fig.
5(c)

-1
= "__2—4&——&——3”“—1 / (v —u” )
%1 v—2

~(6 —5u+1) (™" — )
n V(6 —5v+1)

F—5u+6

5)
(whi—u3')
3. 2-Dimensional Upwind Leapfrog

Schemes
2nd-order upwind leapfrog
advection and acoustic equations are presented
in this section.

schemes for
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Fig. 6 Staggered grid arrangement and stencils
of the 2nd-order schemes

3.1. 2nd-order advection schemes

The 2D advection equation is

du ou ou

Bt + a% + b% =0 ®)
and the advection speed, (@.b) is assumed

to be constant. The propagation direction, ¢, is

a=tan""'(b/a).

to extend the upwind

defined as There are a few

approaches leapfrog
method to They primarily
depend on the computational grid type as
mentioned by Roe and Thomas[4,5]. To be

consistent with the mesh arrangement of the

multi-dimensions.

acoustic schemes, staggered grid storing the
variable at the cell edge, is utilized. Although
the staggered grid is merely a scaling and
rotation of the uniform grid, they are generally
treated distinctly because in wave propagation
problems, it is sometimes advantageous to
store different variables at different nodes of
the staggered mesh.

The 2nd-order stencils are shown in Fig. 6
and the discretized equations are

et -t
a) 6tu]+l k+5,u]_i k+2v151u]
7 z

2vdut =0 (7)

¥y ik

n+ !

1
b) 6,ul kfl + 5lul k_zl +2ydu+ 2w du =0 (8)
2 T2

1 L

nt = ne = . .
c) 5lul_-12k + 5’u]+]—zk +2r8uf +2y0ul = 0 (9)
5 .

~

(a) (b)

Fig. 7 Four-level 2nd- and 4th-order stencils
on staggered grid

1

1
nt = n— -

d) L 2 ~}~¢5¢1L"‘+21 +2vdun +2v0un =0 (10)
M -3 » 7

z

where v, = aAt/Az, y,= bAt/Ay and the

discrete differencing and averaging operators
are defined by

R ' "3 n—i
+ - ~ -
TR B TS Y S
U = Uk W,y B = B ,
uy U,
Sur N J+E,k ik
u’, =u" —u u. ,
75,k j+%,k ,—l & :uz 2
n »
u U
k4L + k= L
Su’, =u" —u" "= 2
k 1 1 &
¥o Jk+ L j'kif’ :u‘vu) 2

We will adopt whichever of (a), (b), (c) or
(d) respects the domain of dependence. This
means that the solution may not depend
continuously on the direction of propagation,
and for computing steady-state solutions this
with
However, we have not found any difficulties

might cause problems convergence.
due to this dependence in the linear scalar

case.

3.2 Higher—order advection schemes

To develop schemes of 4th-order accuracy,
the stencil of the 2nd-order method is
extended into time. The 2nd-order truncation
error terms of the upwind leapfrog scheme are
presented as
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(ﬂ+aﬁ+b3u)+Az?At[ Bu+ Ay Fu

ot oz 12 oz’ Az? 6y

Fu At Fu At By
3.2 +1 +10.—_Z_]+ O(Az*).
3zt AZ dxot? Ax? O ) ( )

The four-level compact stencill shown in

Fig. 7 is not enough to eliminate the
2nd-order errors and the smallest stencil on
which the error terms could be discretized, is
presented in Fig. 7(b). With the relation,
8u/8t:— aau/az-— bau/ay, terms are
replaced as below because they could not be
discretized on the stencil(Fig. 7(b)). Then the

error terms are discretized and the resultant

some

scheme is

5,u]';“ +(5tu +2(u5 +16,)

~{cz,,,u,6,52+cm[85 (pa—pty) + 8041, (L)
+ oy 00 8.+ p 0048, 1y, =0

where
o = 1/'—1/2’ o= (10v,~2)(v, —1)
w12y, 12
vy, (10r,—1)(2v, —1) 10021
Cont = 12, wm= 13

3.3. 2nd-order acoustics schemes

Multi-dimensional acoustics is represented
by the linearized Euler equations. These
equations having pressure and velocity
fluctuations(p, = [, v, w]) are

P:‘*’Pnafv -’U.ZO,
1 (12)
u¢+7Vp: 0,

where p, and a, are steady state values of

density and speed of sound. To develop the
leapfrog method for acoustics, the
(12) is
characteristic form which is as similar as

upwid

system of equations arranged in

Q. v —qv

Fig. 8 Stencils of 2nd-order upwind leapfrog
methods.

possible to the advection equation, because
characteristic form of equations clarifies wave
propagation direction. Characteristic equations
aligned along x- and y-axis are used as the
two-dimensional

governing  equations  of

acoustics and expressed as follows.

_a_ a 28’0
(a i- a )(pip aou)_ po ( ay:
(13)

a2 7
('a_t' + aa'a_y )(pj: poaav) = paa’oz_a_%'

Since the left-hand sides of the above
equations resemble one-dimensional advection
equation, they can be discretized in the same
way as the one-dimensional scheme. The
right-hand sides are discretized by central
differencing. As a typical difficulty encountered
in application of characteristic equations, three
unknown variables should be updated in two-
dimensional although the
characteristic method provides four relations
and the pressure is updated twice.

The staggered grid method
variables as showin in Fig. 8 was developed
by Roe and Thomas[3] to discretize the cha-
racteristic equation without dissipation. The
pressure updated with u is stored with u and
the other pressure with v is stored with .

The pressure updated with v is described as ¢
unity for

acoustics

storing the

and p, and @ are set to

convenience. Therefore, the characteristic

equations are
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Fig. 9 3-level 4th-order stencil for +x wave

2wt (pru)=—2r,
5 (14)
E(qiv)i"%(qiv)?‘@%

and discretized as follows.

n+

vl

o+ 5, +ope) 7,
‘ +2U15Z(P+U)}:k+2uy5yv;k=0,.
o), +ato-u)
—2v8, (p—u) i+ 20005, =0,
o) F 4 o) (15)
+2u0 (q+v)],c+21/6 u/,=0,

8 (q— U)k 1—|—6 (— U)

—2u0, (q— v+ 2r,0,u=0.

This method eliminates the averaging of
pressures and updates solutions without any
dissipation. Furthermore, the staggered grid
provides compact stencil, which is considered
as another advantage of the staggered grid.

3.4. Higher-order acoustics schemes

To develop higher-order scheme, the stencil
of the second-order scheme, Fig. 8 is extended
in space as shown in Fig. 9. Developing a

Wall A B c
Boundary

N .

Fig. 10 Explanation of initial value problem for
comparison of leapfrog type schemes

three-level fourth-order scheme would be
straightforward if stability were not an issue.
The second-order scheme for (p+u) wave

with the second-order error terms is

1
6,(p+u]+f’k+5(p+u)_fv +26,(p+u),+ 207, =
2 2
3.
—-c, Azaﬂ—c AzAy? Pq -c, Azs-a—E (16)
=" G oy’ "~ 0z
Fu % Fv
—e ArAy—0r10 - A’A—— —,
c yaﬁy c,, Vorty w5
where
1 _2,
¢ = E (208 — 3+ v,), ¢, = 3 2 (2r,— 3),
1 _1 2
€= E(2U_3V+V)’ c%—?}-,v,
c, -1, (42 —-6v,+3), ¢, =1, (442 —1).
£ 12 v 'y 12 v ¥

Then discretizing the second-order errors
and moving them to the left hand side
increase the order of accuracy. The
discretizations of the error terms are as
follows.

) u
3 — n 3 n
Az 823 Zp],k} AZ 61: 53“7,}:7
o
ys——yg = &, AanAyz—J—9 57 = RIS,
Fu 1
2 = — (286 62 u2ss
AzAy " =1 (286, 25,00 yu
Array 2y - L (280825, —4 42626 Y
31:23y_24 20y 21020 )k -
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Fig. 11 Grid convergence histories, circle :
method

Other characteristics equations can be

discretized in the way described above.

35. Accuracy Comparison of
Leapfrog Schemes

Another leapfrog type scheme
standard leapfrog scheme, mainly designed for

electromagnetics and

is Yee's
acoustics. It stores
pressure and velocities at cell center and edges
respectively. Its-accuracy is-comparable -to- the
upwind leapfrog method. Nguyenl6] compared
properties of these schemes and
concluded that floating point operations per cell
of two-dimensional upwind

leapfrog method is more than that of Yee's

phase
second-order
scheme but its accuracy is higher than Yee's

Therefore the efficiency of both
are comparable. To confirm that

schems.
schemes
comparison, a simple initial value problem is
devised as shown in Fig. 10.

(e) Pt B t=50, 4th-odr
upwind leapfrog, square :

(f) Pt C t=70, 4th-odr
Yee's standard leapfrog

Initial values are
In2
p(9) = e~ 2EE [+ (y=20)7),
u(z, y) = v(z,9) = 0.

The positions of the points A, B and C are
(20,200, (40,20) and (60,20). Ghost cells are
generated with mirror images for wall
boundary treatment and the Courant numbers

(v, v, ) are 1/4. Pressure values are measured

at each point and compared on various grid
sizes.

Measuring time of the points A, B and C are
45, 50 and 70. Fig. 11 presents the grid
convergence histories of each point. The
results of the second-order schemes(Fig. 11(a),
(b) and (c)) show very similar accuracy level.
However, the fourth-order results (Fig. 11(d),
(e) and (f)) demonstrate distinct deviation
between two results. The fourth-order upwind
accurate solutions

leapfrog scheme updates
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Fig. 12

with even coarse grid.

4. Numerical Experiments

The 2nd- and 4th-order upwind leapfrog
schemes for advection and the 2nd-order
acoustic equations are applied to typical test
examples such as rotating disk and piston
problem simulation.

4.1. Rotating Disk
We consider the case of advection in a
circle, governed by the equation

(17

Fig. 12 presents the results of simulating
the above equation (17) with the 2nd-order
and 4th-order schemes on 20x20 grid. With
the 2nd-order scheme, the distribution starts to
distort after one rvevolution(Fig. 12(a)). the
solution does not preserve the initial shape
one Fig. 12(b) and the
measured peak values are meaningless, Fig.
12(b)-(c).

The 4th-order scheme is applied with some

after revolution,

-06 02 a2 06 1 -1

(e) t=4m

Rotating disk simulation with the upwind leapfrog methods.
(a),(b),(c):2nd-order, (d),(e),(f): 4th-order.

(f) t=8m

Grid size = 20x20.

additional terms to achieve the resolution. The
additional term for the +x-axis is

— (.00 + 0,0, + cw6:;+ 20,0, + €,0,0, )%
where

Cay= (8. +6.0,) /8,
Cw=—5v,0,,/12,

o =— VA W,/ 120,,
Cypy =— 1_/!/6,1_/‘,,/121-4'
cp=(6—5v,)0,v,/12

and l_/z:l/zlj,k; l-/y:VyI];lc. Those terms are
discretized and subtracted from the four-level
scheme(11). This
resolution and leads to the results shown in
Fig. 12(d)-(f). The 4th-order scheme does not
change the initial distribution and generate any

correction improves the

Even four revolution does not
its peak

disturbance.
distort the initial distribution and
value decreases steadily by 5.75% over the
course of evolution.

4.2. Piston Problem Simulation

The acoustic wave produced by an
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Fig. 13 Pressure contour plot 0of Piston Problem.

z=Ay=1/12,t=3.0.

oscillating piston with an axisymmetric infinité
baffle(Fig. 13) was simulated to test the
numerical scheme. This problem is governed
by the linearized axisymmetric Euler equations
whose characteristic form is

i) 3 v w
w5 (pEu)tgr= -0
(18)
1% ou v
i

7]
E(qiv)ia—y(qu)Jra—z: -
The analytic solution for the magnitude of

the pressure oscillations along the axis of
symmetry[9] is given as

sin(’f[ 1+[-§’2—]2—1D

where P is the magnitude of pressure osci-
llation, U is the

P(x) _

2p,a,U

, (19)

piston  displacement
magnitude, f is the frequency and 7, is its
Equation(19)

pressure magnitude is function of f, 7 and x

radius. shows that the axial

for given p.a, and U. For simplicity, £..8.
and U are set to one. The axisymmetric

—v/y

equations also have a source term,

— Exatt
~~~~~~ 16 gndsiwave
-------- 12 gridsiwave
---------- 8 gridsiwave

Fig. 14 Comparison of numerical pressure
envelopes with analytic solution for
various grid sizes.

which is independent of (P* ) and it was
discretized by central differencing. However
the source term of Equation(18) is dependent
on (gtv) and it requires a
described in  [8].

leapfrog

stabilizing
Three-level
were

technique
2nd-order
implemented for  this

upwind schemes
experiment. The
frequency is chosen as ten cycles per unit
time and 7, equal to 1/10 of unit length. The

computational domain s 0=z<1.0 and
0 < y< 1.0 Fig. 13 shows the contour plot of
acoustic field. The grid size used for this
computation and the Courant number were
120x120 and 1/2 respectively. Most of the
acoustic energy was transmitted along the axis
of symmetry and a smaller portion was
radiated diagonally. Giles’ 2nd-order boundary
condition was implemented at the far-field and
little outgoing acoustic wave was reflected.
Pressure magnitudes along the axis were
compared with the analytic solution for various
grid size in Fig. 14 and the result exhibits
good agreement with the analytic solution even
on the coarse grid (8 cells per wavelength).
As the grid is refined,

converged to the analytic solution.

numerical results
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5. Conclusion

Cne-dimensional version of the upwind
leapfrog method was successfully extended to
multi-dimensional advection and acoustic equa-
tions. This work is an attempt at creating
highly accurate schemes for passive advection
of scalar quantity. By design, these methods
are free from dissipation and the dispersion
error could be reduced significantly by keeping
in the
cocrdinate. Numerical experiment results assure
the accuracy of the upwind leapfrog method.

the stencil compact characteristic
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