Cell Cycle Arrest of Human Lung Carcinoma A549 Cells by an Aqueous Extract from the Roots of Platycodon grandiflorum

길경 수용액 추출물에 의한 인체 폐암세포의 성장억제 기전 연구

  • Kang Rak Won (Department of Internal Medicine, Oriental Medicine, Dongeui University) ;
  • Lee Jae Hun (Biochemistry, Oriental Medicine, Dongeui University) ;
  • Kam Cheol Woo (Department of Internal Medicine, Oriental Medicine, Dongeui University) ;
  • Choi Byung Tae (Anatomy, College of Oriental Medicine and Research Institute of Oriental Medicine, Dongeui University) ;
  • Choi Yung Hyun (Biochemistry, Oriental Medicine, Dongeui University) ;
  • Park Dong Il (Department of Internal Medicine, Oriental Medicine, Dongeui University)
  • 강락원 (동의대학교 한의과대학 내과학교실) ;
  • 이재원 (동의대학교 한의과대학 생화학교실) ;
  • 감철우 (동의대학교 한의과대학 내과학교실) ;
  • 최병태 (동의대학교 한의과대학 해부학교실 및 한의학연구소) ;
  • 최영현 (동의대학교 한의과대학 생화학교실) ;
  • 박동일 (동의대학교 한의과대학 내과학교실)
  • Published : 2003.02.01

Abstract

Platycodi Radix, the root of Platycodon grandiflorum, commonly known as Doraji, is used as a traditional oriental medicine. Extracts from the roots of P. grandiflorum have been reported to have wide ranging health benefits. We investigated the effects of an aqueous extract from the roots of P. grandiflorum (AEPG) on the cell proliferation of human lung carcinoma A549 cells in order to understand its anti-proliferative mechanism. AEPG treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. This anti-proliferative effect of A549 cells by AEPG treatment was associated with morphological changes such as membrane shrinking, cell rounding up and inhibition of cell migration. DNA flow cytometric histograms showed that populations of both Sand G2/M phase of the cell cycle were increased by AEPG treatment in a concentration-dependent manner. AEPG treatment induced a marked accumulation of tumor suppressor p53 and a concomitant induction of cyclin-dependent kinase (Cdk) inhibitor p21 and p27. In addition, SSS treatment resulted in down-regulation of Cdk2 and Cdk4 expression. The present results indicated that AEPG-induced inhibition of lung cancer cell proliferation is associated with the blockage of S to G2/M phase progression the induction of apoptosis. Taken together, these findings suggest that P. grandiflorum has strong potential for development as an agent for prevention against human lung cancer.

Keywords

References

  1. Cell v.81 The retinoblastoma protein and cell cycle control. Weinberg, R.A. https://doi.org/10.1016/0092-8674(95)90385-2
  2. Cancer Res. v.60 The Pezcoller lecture : cancer cell cycles revisited. Sherr, C.J.
  3. Yakugaku Zasshi. v.92 Pharmacological studies on Platycodon grandiflorum A. DC. Takagi, K.;Lee, E.B. https://doi.org/10.1248/yakushi1947.92.8_951
  4. J. Pharm. Soc. Korea v.19 Pharmacological activities of crude platycodin. Lee, E.B.
  5. Biol. Pharm. Bull. v.18 Studies on antiinflammatory effect of Japanese Oriental medicines (kampo medicines) used to treat inflammatory diseases. Ozaki, Y. https://doi.org/10.1248/bpb.18.559
  6. Planta Med. v.65 A comparative study on commercial, botanical gardens and wild samples of the roots of Platycodon grandiflorum by HPLC analysis. Saeki, T.;Koike, K.;Nikaido, T. https://doi.org/10.1055/s-1999-14021
  7. Arg. Chem. Biotech. v.40 Pharmaceutical substances of Platycodon grandiflorum (jacquin) A. De Candolle. Chung, J.H.;Shin, P.G.;Ryu, J.C,;Jang, D.S.;Cho, S.H.
  8. Planta Med. v.67 Inhibition of prostaglandin E2 production by platycodin D isolated from the root of Platycodon grandiflorum. Kim, Y.P.;Lee, E.B.;Kim, S.Y.;Li, D.;Ban, H.S.;Lim, S.S.;Shin, K.H.;Ohuchi, K. https://doi.org/10.1055/s-2001-14317
  9. Yakhak Hoeji v.42 Antitumor and immunomodulatory activities of the Platycodon grandiflorum cultivated for more than 20 years. Kim, Y.S.;Lee, B.E.;Kim, K.J.;Lee, Y.T.;Gho, KB., Chung, Y.C
  10. Kor. J. Food Sci. Technol. v.30 Effect of Platycodon grandiflorum DC extract on the growth of cancer cell lines Lee, J.Y.;Hwang, W.I.;Lim, S.T.
  11. Shoyakugaku Zasshi J. Pharm. Soc. Jpn. v.40 Immune pharmacological studies on platicodi radix(Ⅱ). Antitumor activity of inulin from platicodi radix. Nagao, T.;Matsuda, H.;Namba, K.;Kubo, M.
  12. Kor. J. Life Sci.(in press) Apoptotic Cell Death of Human Lung Carcinoma A549 Cells by an Aqueous Extract from the Roots of Platycodon grandiflorum. Lee, S.Y.;Lee, J.H.;Kim, W.I.;Park, D.I.;Choi, Y.H.
  13. Int. J. Oncol. v.21 Tetrandrine-induced cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Lee, J.H.;Kang, G.H.;Kim, G.C.;Kim, KM.;Choi, B.T.;Kang, H.S.;Lee, Y.T.; Choi, Y.H.
  14. Cancer Lett. v.17 Resveratrol and quercetin inhibit angiogenesis in vitro. Igura, K.;Ohta, T.;Kuroda, Y.;Kaji, K.
  15. Exp. Mol. Med. v.33 Research technics for the cell cycle study Choi, Y.H. https://doi.org/10.1038/emm.2001.3
  16. J. Biol. Chem. v.272 Regulation of cyclin D1 by calpain protease. Choi, Y.H.;Lee, S.J.;Nguyen, P.;Jang, J.S.;Lee, J.;Wu, M.L.;Takano, E.; Maki, M.;Henkart, P.A.;Trepel, J.B. https://doi.org/10.1074/jbc.272.45.28479
  17. Mol. Cell. Biol. v.14 D-type cyclin-dependent kinase activity in mammalian cells. Matsushime, H.;Quelle, D.E.;Shurtleff, SA.;Shibuya, M.;Sherr, CJ.;Kato, J.Y. https://doi.org/10.1128/MCB.14.3.2066
  18. Science v.257 Formation and activation of a cyclin E-cdk2 complex during the Gl phase of the human cell cycle. Koff, A.;Giordano, A.;Desai, D.;Yamashita, K.;Harper, J.W.;Elledge, S.; Nishimoto, T.;Morgan, D.O.;Franza, B.R.;Roberts, J.M. https://doi.org/10.1126/science.1388288
  19. Mol. Cell. Biol. v.14 Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Meyerson, M.;Harlow, E. https://doi.org/10.1128/MCB.14.3.2077
  20. Nature v.354 Role for cyclin A in the dependence of mitosis on completion of DNA replication. Walker, D.H.;Maller, J.L. https://doi.org/10.1038/354314a0
  21. Science v.259 Cyelin-dependent regulation of G1 in mammalian fibroblasts. Ohtsubo, M.;Roberts, J.M. https://doi.org/10.1126/science.8384376
  22. Curr. Opin. Cell Biol. v.6 Cdk inhibitors: on the threshold of checkpoints and development. Elledge, S.J.;Harper, J.W. https://doi.org/10.1016/0955-0674(94)90055-8
  23. Cell v.75 The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Harper, J.W.;Adami, G.R.;Wei, N.;Keyomarsi, K.;Elledge, S.J. https://doi.org/10.1016/0092-8674(93)90499-G
  24. Nature v.374 Principles of CDK regulation. Morgan, D.O. https://doi.org/10.1038/374131a0
  25. Cell v.75 WAF1, a potential mediator of p53 tumor suppression. EI-Deiry, W.S.;Tokino, T.;Velculesco, V.E.;Levy, D.B.;Parsons, R.;Trent, J.M.; Lin, D.;Mercer, E.W.;Kinzler, K.W.;Vogelstain, B. https://doi.org/10.1016/0092-8674(93)90500-P
  26. Nature v.366 p21 is a universal inhibitor of cyclin kinases. Xiong, Y.;Hannon, G.;Zhang, H.;Casso, D.;Kobayashi, R;Beach, D. https://doi.org/10.1038/366701a0
  27. Cancer Res. v.54 WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. EI-Deiry, W.S.;Harper, J.W.;O'Connor, P.M.;Velculescu, V.E.;Canman, C.E.; Jackman, J.;Pietenpol, J.A.;Burrell, M.;Hill, D.E.;Wang, Y.;Wiman, KG.;Mercer, W.E.;Kastan, M.B.;Kohn, K.W.;Elledge, S.J.;Kinzler, K.W.;Vogelstain, B.
  28. J. Biol. Chem. v.270 Functional analysis of the transforming growth factor ${\beta}$ responsive elements in the WAF/Cip1/p21 promoter. Datto, M.B.;Yu, Y.;Wang, X.F. https://doi.org/10.1074/jbc.270.48.28623
  29. Oncogene v.12 Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Zeng, Y.X.;El-Deiry, W.S.
  30. Ann. N. Y. Acad. Sci. v.886 Histone deacetylase inhibitor activates the p21/WAF1/Cip1 gene promoter through the Sp1 sites. Sawa, Y.;Orita, T.;Hiranabe-Minamikawa, S.;Nakano, K.;Mizuno, T.;Nomura, H.; Sakai, T. https://doi.org/10.1111/j.1749-6632.1999.tb09415.x
  31. Jpn. J. Cancer Res. v.91 p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Choi, Y.H.;Lee, W.H.;Park, K.Y.;Zhang, L. https://doi.org/10.1111/j.1349-7006.2000.tb00928.x
  32. Oncogene v.9 Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Li, Y.;Jenkins, C.W.;Nichols, M.A.;Xiong, Y.
  33. Cold Spring Harb. Symp. Quant. BioI. v.59 p21 is a component of active cell cycle kinases. Zhang, H.;Hannon, G.J.;Casso, D.;Beach, D. https://doi.org/10.1101/SQB.1994.059.01.005
  34. Mech. Ageing Dev. v.116 Aging enhances G(1) phase in the colonic mucosa of rats. Xiao, Z.Q.;Jaszewski, R.;Majumdar, A.P. https://doi.org/10.1016/S0047-6374(00)00127-5
  35. Carcinogenesis v.21 Involvement of p21(Wafl/Cipl) and its cleavage by DEVD-caspase during apoptosis of colorectal cancer cells induced by butyrate. Chai,F.;Evdokiou, A.;Young, G.P.;Zalewski, P.O. https://doi.org/10.1093/carcin/21.1.7
  36. Science v.263 Premature p34cdc2 activation required for apoptosis. Shi. L.;Nishioka, W.K.;Th'ng, J.;Bradbury, E.M.;Litchfield, D.W.; Greenberg, A.H. https://doi.org/10.1126/science.8108732
  37. Am. J. Pathol. v.136 Apoptosis. The role of the endonuclease. Arends, M.J.;Morris, R.G.;Wyllie, A.H.
  38. Cell Biol. Int. v.17 Multiple pathways to apoptosis. Evans, V.G. https://doi.org/10.1006/cbir.1993.1087
  39. Cell. Mol. Biol. Res. v.40 Apoptosis and the cell cycle. Chiarugi, V.;Magnelli, L.;Cinelli.;Basi, G.
  40. Cell v.80 Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Miyashita, T.;Reed, J.C. https://doi.org/10.1016/0092-8674(95)90412-3