DOI QR코드

DOI QR Code

Detailed Flow Analysis of Helicopter Shrouded Tail Rotor in Hover Using an Unstructured Mesh Flow Solver

비정렬격자계를 이용한 헬리콥터 덮개 꼬리 로터의 제자리 비행 유동 해석

  • Published : 2003.06.01

Abstract

Detailed flow of a shrouded tail rotor in hover is studied by using a compressible inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. Numerical simulation is made for a single blade attached to the center body and guide by the duct by imposing a periodic boundary condition between adjacent rotor blades. The results show that the performance of an isolated rotor without shroud compares well with experiment. In case of a shrouded rotor, correction of the collective pitch angle is made such that the overall performance matches with experiment to account for the uncertainties of the experimental model configuration. Details of the flow field compare well with the experiment confirming the validity of the present method.

본 연구에서는 비정렬격자계를 사용하여 덮개 꼬리 로터의 제자리 비행에 대한 압축성, 비정성 유동을 해석하였다. 유동계산을 위한 수치적 기법으로는 셀 중심에 기초한 유한체적법과 내재적인 시간적분법을 사용하였다. 계산은 로터의 한 블레이드에 대해 수행되었으며, 블레이드와 블레이드 사이에는 주기적 경계조건을 설정하였다. 덮개가 없는 로터 형상에 대한 성능은 실험 결과와 잘 일치함을 보였다. 덮개를 포함하는 로터 형상에 대한 계산은 비교된 실험 형상의 불확실성을 고려하여 추력이 일치하는 피치각을 가지는 경우에 대해 수행하였으며, 자세한 유동은 실험결과와 잘 일치함을 확인할 수 있었다. 그 결과로부터 본 방법이 블레이드 끝단간극을 포함하는 복잡한 3차원 덮개 꼬리 로터 형상 해석에 매우 유용하게 사용될 수 있음을 알 수 있었다.

Keywords

References

  1. Mouille, R., "The Fenestron, Shrouded Tail Rotor of the SA. 341 Gazelle," Journal of the American Helicopter Society, Vol.15, No. 4, 1970, pp. 31-37. https://doi.org/10.4050/JAHS.15.31
  2. Boris, N. B., and Serguei, V. S., "Fan-in-Fin Performance at Hover Computational Method," Proceedings of 26th European Rotorcraft Forum, 2000.
  3. Rajagopalan, R. G., and Keys, C. N., "Aerodynamic Analysis of the RAH-66 $FANTAIL^{TM}$ Using CFD," Journal of the American Helicopter Society, Vol. 42, No. 4, 1997, 310-320. https://doi.org/10.4050/JAHS.42.310
  4. Bandoh, S., Fundamoto, M., and Akiyama, T., "The Ducted Tail Rotor System of the New Observation Helicopter(XOH-1.," Heli Japan, 98-12-7, 1998.
  5. Vuillet, A., and Morelli, F., "New Aerodynamic Design of the Fenestron for Improved Performance," Proceedings of 12th European Rotorcraft Forum, 1986.
  6. Moille, R., and D'ambra, F., "The Fenestron Shrouded Trail Rotor Concept for Helicopter," Proceedings of 38th American Helicopter Society Annual Forum, May 1986.
  7. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors and Difference Scheme," Journal of Computational Physics, Vol. 43, 1981, pp. 357-372 https://doi.org/10.1016/0021-9991(81)90128-5
  8. 강희정, 권오준, "비정렬 적응 격자를 이용한 로터 정지비행 공력해석," 한국항공우주학회지, 제28권, 제8호, 2000, pp. 1-7
  9. Kramer, E., Hertel, J., and Wagner, S., "Computation of Subsonic and Transonic Helicopter Rotor Flow Using Euler Equations," Vertica, Vol. 12, No.3, 1988, pp. 279-291.
  10. Hertel, J., Kramer, E., and Wagner, S., "Complete Euler Solution for a Rotor in Hover and a Propella in Forward Flight," Paper I.4.2, Sixteenth European Rotorcraft Forum, Glasgrow, Scotland, UK, Sept. 1990.
  11. Srinivasan, G. R., Raghava, V., and Duque, E. P. N., "Flowfield Analysis of Modern Helicopter Rotors in Hover by Navier-Stokes Method," Journal of the American Helicopter Society, Vol. 38, No. 3, 1993, pp. 3-13. https://doi.org/10.4050/JAHS.38.3
  12. Strawn, R. C, and Djomehri, M. J., "Computational Medeling of Hovering Rotor and Wake Aerodynamics," Proceedings of the American Helicopter Society 57th Annual Forum, May 9-11, 2001.
  13. Leishman, J. G., "Principles of Helicopter Aerodynamics," Cambridge University Press, 2000, pp. 229-231.
  14. Xu, G. H., and Wang, S. C., "Effects of the Shroud on Aerodynamic Performance in Helicopter Shrouded Tail Rotor Aerospace Technology," Journal of Aircraft Engineering and Aerospace Technology, Vol. 73, No. 6, 2001, pp. 568-572. https://doi.org/10.1108/00022660110408569