DOI QR코드

DOI QR Code

A Study on Steady-State and Transient Simulation of Turboprop Engine Using SIMULINK® Model

SIMULINK® Model를 이용한 터보프롭엔진의 정상상태 및 천이모사 연구


Abstract

A performacne simulation model of the PT6A-62 turboprop engine using the $SIMULINK^R$ was proposed to predict transient and steady state behaviors. The $SIMULINK^R$ has several advantages such as user-friendliness due to the GUI(Graphic User Interfaces) and ease in the modification of the computer program. The $SIMULINK^R$ model consists of subsystems to represent engine gas path components such as flight initial subsystem, compressor subsystem, burner subsystem, compressor turbine subsystem, power turbine, exhaust nozzle subsystem and integrator subsystem. In addition to subsystems, there are search subsystems to find an appropriate operating point by scaling from the 2-D components look-up table, Gasprop Subsystem to calculate the gas property precisely. In case of steady state validation, performance results analyzed by the proposed $SIMULINK^R$ model were agreed well with the analysis results by the commercial GASTURB program. Moreover in validation of the transient model, it was found that performance simulation results by the proposed model were reasonable agreement with analysis results by the well-proved computer program using FORTRAN.

$SIMULINK^R$를 이용하여 Pt6A-62 터보프롭엔진의 성능모사모델이 정상상태 및 천이성능 예측을 위해 제안되었다. $SIMULINK^R$모델은 GUI 방식으로 사용자 편의와 컴퓨터프로그램의 수정이 용이하다는 장점을 가지고 있다. $SIMULINK^R$모델은 유동경로에 따른 구성품들 즉, 대기조건, 압축기, 연소기, 압축기 터빈, 동력터빈, 배기노즐, 적분기 서브시스템들로 구성하였다. 이러한 서브시스템외에 보다 정확한 기체상수값을 계산하기위한 Gasprop 서브시스템블록, 2-D look-up 테이블로부터 스케일링에 의해 적합한 작동 점을 탐색하기 위한 탐색 서브시스템블록이 있다. 정상상태 해석 타당성 확인 경우, 제안된 $SIMULINK^R$에 의한 해석결과는 사용프로그램인 GASTURB와 해석결과에 잘 일치하였다. 또한 천이모델의 타당성 확인 경우에 있어서는, 제안된모델에의한 동적성능모사 결과가 기 성능이 입증된 FORTRAN프로그램을 이용한 해석결과와 합리적으로 일치함이 확인되었다.

Keywords

References

  1. Blotenberg,W., "Model for the Dynamic Simulation of a Two-shaft Industrial Gas Turbine with Dry Low Nox Combustor", ASME 93-GT-355
  2. Schobeiri, M.T., Attia, M. and Lippke, C., July 1994, GETRAN: A Genetic, Modularly, Structured Computer Code for Silmulation of Dynamic Behavior of Aero-and Power Generation Gas Turbine Engines, Journal of Engineering for Gas Turbines and Power, Vol.116, pp.483-494 https://doi.org/10.1115/1.2906847
  3. Bettocchi,R., Spinaa,P.R. et al., Dynamic Modeling of Single-Shaft Industrial Gas Turbine, ASME 96-GT-332, 1996
  4. Crosa, G., and F. Pittaluga et al., "Heavy-Duty Gas Turbine Plant Aerothermodynamic Simulation Using Simulink", Transaction of the ASME
  5. Kurzke, J., 1998 GASTRUB Program Manual version 8.0
  6. 정슬, SIMULINK 기초 사용법과 응용기술, 아진, 2002.
  7. 나재정, PT6A-62엔진 장착 성능해석 연구, 국방과학연구소, 1996.
  8. Cohen, H., Rogers, G.F.C., Saravanamutto, H. I. H., 1996, "Gas Turbine Theory, Longman", 4th Edition
  9. Sellers, J.F. and Daniele, C.J., 1975, DYNGEN-A Program for calculating Steady-state and Transient Performance of Turbojet and Turbofan Engines, NASA TN D-7901
  10. Kong, C. and Ki, J., et al. 2000, "Propulsion System Integration of Turboprop Aircraft for Basic Trainer , ASME 00-GT-10
  11. Kong, C. and Ki, J., 2001, Performance Simulation of Turboprop Engine for Basic Trainer, ASME Turbo Expo 2001 Conference
  12. Douglas, I.E. 1986, Development of a Turbine Performance Simulation , Ph.D. Thesis, Cranfield University, United Kingdon
  13. Kim, S., 1999,"Turbine-Dynamic Simulation Using SIMULINKR ", MSc Thesis, SME, Cranfield University