Development of Scientific Payloads for Korea Sounding Rocket–III
Seung-Hyun Hwang*, Jhoon Kim*, Soo-jin Lee*, Young-Doo Chun* and Jung-Joo Park*

ABSTRACT
This paper describes the development of an ozone detector and an electron probe as parts of scientific payloads for sounding rockets such as the KSR-III. Each detector consists of sensor parts and electronic parts. We successfully carried out the calibration tests with developed ozone detector and the space plasma simulation chamber tests with electron detector. These payloads could be onboard the KSR-III and with measured data, it is expected to contribute to the research of the vertical ozone density profile and the electron density and temperature profile over the Korean Peninsular.

초 록
본 논문은 KSR-III 과학로켓에 탑재 가능한 과학탐체계 중 오존측정기와 이온층 전자측정기 개발에 관하여 기술하고 있다. 각각의 측정기는 센서부와 화로부로 구성되며 개발 완료된 모델로 오존측정기는 지상 보정실험을, 그리고 전자측정기는 우주환경 모사실험을 성공적으로 수행하였다. 이렇게 개발된 탐체계들은 향후 KSR-III등의 과학로켓에 탑재될 수 있으며, 한반도 상공의 오존층 밀도의 고도별 수직분포와 이온층의 전자밀도와 전자온도에 대한 고도별 수직분포를 연구하는데 크게 기여할 것이다.

Key Words: Korea Sounding Rocket(과학로켓), Scientific Payload(과학탐체계), Ozone Detector(오존측정기), Electron Probe(전자측정기)

1. 서 론
한국항공우주연구원에서는 과학관측로켓 개발사업으로 이미 1993년과 1997년에 성공적인 발사 를 하여 한반도 대기상태를 관측한 바 있다. 현재 한국항공우주연구원에서는 KSR-III(Korea Sounding Rocket-III, 한국형 과학로켓 3호)를 개발하고 있다. KSR-III는 우리나라에서의 저궤도 위성 발사를 위한 우주 발사체 개발의 전 단계로 한반도 상공의 물리, 화학적인 환경의 기초자료 확득 및 우주 발사체 개발에 필요한 각종 기술

* 2002년 9월 9일 접수 ~ 2002년 10월 9일 심사완료
* 정회원, 한국항공우주연구원
연락처: E-mail: shhwang@kari.re.kr,
대전시 유성구 이온동 45번지

d, 예를 들면 저세계기술, 추력 제어기술 등의 개발과 지상시험 및 비행시험을 통해 설계 제작 기술의 검증을 위한 각종 자료들을 얻는데 목적이 있다[1].

KSR-III에 탑재 가능한 과학 탐체계들은 오존측정기, 이온층 전자 측정기, 대기광(air glow) 측정기, 자기장 측정기(magnetometer) 등이 있다. 이중에서 한국항공우주연구원에서는 오존측정기와 이온층 전자 측정기를 개발하였다.

오존측정기는 20~70km 상공에 존재하는 오존층 밀도 분포를 관측하는데 목적이 있다. 오존층을 관측하는 방법으로는 지상에서 마이크로파를 이용한 방법, 기구(balloon)를 이용한 방법, 과학로켓을 이용한 방법, 인공위성을 이용한 방법 등이 존재한다. 지상관측과 인공위성을 이용한
2.1 원리

이론적 분석의 양은 그 물질이 흡수하는 에너지의 양과 선형적 관계를 갖는다. 이를 Beer-Lambert Law라고 하며 이 법칙에 따르면 오존층을 통과하는 태양 강도 복사(solar radiation intensity)의 변화량은 오존층에 의해 흡수되는 태양빛의 양에 비례하게 된다. 이를 수식으로 나타내면 다음 식 (1)과 같다.

\[
I(z) = I_\infty \exp(-\sigma_a N(z) - \beta_a \omega(z))
\]
(1)

여기서 \(I(z)\)는 고도 \(z\)에서의 태양복사강도, \(I_\infty\)는 무한한 고도에서의 태양복사강도, \(\sigma_a\)는 유효오존흡수계수(effective ozone absorption coefficient), \(N(z)\)는 오존기둥밀도(slant ozone column density), \(\beta_a\)는 유효분자산란계수(effective molecular scattering coefficient), \(\omega(z)\)는 대기기둥밀도(slant air column density)를 나타낸다. 식 (1)에서 광학적 감도와 간섭필터의 투과율을 고려하여 로켓으로부터 측정된 태양빛 사각도에 따른 비율을 나타내면 다음의 식 (2)와 같이 나타낼 수 있다.

\[
\frac{I(z)}{I(z_0)} = \frac{\int_{\lambda_1}^{\lambda_2} F(\lambda) S(\lambda, \theta) \exp[-\sigma_a(\theta, \lambda, T(z)) N(z) - \sigma_g(\lambda) M(z)] d\lambda}{\int_{\lambda_1}^{\lambda_2} F(\lambda) S(\lambda, \theta_0) \exp[-\sigma_a(\theta_0, \lambda, T(z_0)) N(z_0) - \sigma_g(\lambda) M(z_0)] d\lambda}
\]
(2)

여기서 대기중의 유효분자산란계수는 많은 날관측을 할 경우 Rayleigh 산란효과가 가장 크므로 식 (1)의 \(\beta_a\)는 Rayleigh 산란 단면적, \(\sigma_g\)로 간단히 대체할 수 있다. \(I(z)\)는 로켓의 최고 고도 \(z_0\)에서의 측정된 복사강도, \(F(\lambda)\)는 파장에 따른 태양 복사량(solar flux), \(S(\lambda, \theta)\)는 파장과 입사각도에 따른 측정기의 반응함수이며 이는 광학적 반응함수인 \(S_{RF}(\lambda)\)과 간섭 필터의 반응함수인 \(S_{RF}(\lambda, \theta)\)의 곱으로 정의된다.
\(M(z) \)는 고도에 따른 독바경사 기동밀도를 나타내고 있다. 식의 원쪽항은 실제 로켓비행체에서 측정된 복사강도의 값이고 오른쪽의 항들은 이론적으로 계산이 가능한 값들이다. 따라서 측정된 복사강도의 비율과 오존기동밀도, \(M(z) \)에 대한 상대 비례 값을 계산할 수 있으며 이로부터 고도에 따른 오존기동밀도를 도출할 수 있다.

2.2 센서부 구성을

그림 2는 오존측정기의 센서부 전개도를 나타내고 있다. 센서부는 석영렌즈(2), 간섭필터(4) 그리고 광트브(6)로 나눌 수 있고 그 외의 부품들 (1,3,5,7)은 하우징을 나타내고 있다. 하우징의 제작은 페름을 사용하였다.

로켓 비행실험에 사용될 간섭 필터는 일본의 광학사의 Type S와 Type A를 사용하여 구성하 였으며 총 4개의 중심장장을 갖는 필터를 사용하였다. 저전 영역의 간섭필터는 255nm, 290nm, 310nm의 중심장장을 갖고 있으며 가시광선 영역의 간섭필터는 450nm의 중심장장을 갖고 있다. 자유선 영역의 광트브는 일본의 Hamamatsu 사의 Type R840을 채택하였으며 가시광선 영역의 광트브는 Type R414를 사용하여 구성하였다.

광트브는 광 다이오드의 일종으로써 약 180nm 부터 1000nm까지의 넓은 파장 영역의 빛을 감지하여 전류를 출력하도록 되어 있다. 이렇게 광트브 앞쪽에 특정한 영역의 파장만 통과시키는 간섭 필터를 사용하여 원하는 파장대에서의 센서의 강도 변화를 감지하여 전류의 형태로 측정하게 된다. R840 광트브는 약 200nm에서 600nm 사이의 파장대에서 좋은 강도 특성을 갖고 있으며 이전의 KSR-III 실험이에는 R765를 사용하였으나 310nm 파장대에서의 강도가 좋지 않아 넓은 파장대에서 강도가 좋은 R840 광트브를 사용하였다.

로켓의 태양계에 대한 각도를 보정해 주기 위해서 가시광선 영역(450±3nm)의 간섭 필터를 사용하였으며 이는 로켓이 태양빛에 대하여 어떠한 간섭기를 갖고 비행하는지 측정하는 역할을 하며 오존 분포를 계산하는데 있어서 각도 보정값으로 사용한다.

KSR-III에는 총 8개 채널의 센서부가 내피에 각각 90° 각도로 장착되며 255nm 측정용 1개, 290nm 측정용 2개, 310nm 측정용 1개가 장착되며 290nm 측정용 센서부는 180° 각도로 장착된다. 또한 각도 보정을 위한 자유선 영역의 각 채널과 함께 가시광선 영역(450nm) 측정 센서부가 장착되었다.

그림 3은 오존측정기의 센서부 부품들을 보여주고 있으며 자유선 영역에 사용될 부품과 가시광선 영역에 사용될 부품을 한 세트로 보여주고 있다. 그림 4는 이러한 부품들이 하우징에 조립 된 모습을 나타내고 있다. 자유선 영역의 한 채널과 가시광선 영역 한 채널이 하나의 세트로 구성되어 총 4개의 세트가 각각 90° 각도로 로켓의 내피에 장착된다.

2.3 회로부 구성

오존측정기의 회로부는 크게 전류-전압 변환부, 자동이득증폭부로 나뉘며 센서부의 광트브는 태양빛에 반응하여 전류를 출력하며 이를 전류-전압 변환부에서 전용으로 변환한다. 변환된 전압값은 nV정도로 매우 작은 값이기 때문에 자동이득증폭부에서 원격송신부로 보내주는 0~5V사이의 값으로 증폭을 하게 된다. 자동이득 증폭부는 총 6단계의 이득율을 갖고 있으며 1, 4, 16, 64, 256, 1024배 증폭하도록 구성되어 있다. 그림 5는 회로부의 간단한 구성도를 나타내고 있다. 자동이득증폭부에서 출력된 값은 아날로그 출력값과 그래픽 이득율을 나타내는 이득을 출력

![그림 2. 오존측정기 센서부 전개도](image-url)
그림 5. 오존측정기 회로부 구성도

그림 6. 오존측정기 회로부

값을 갖고 이 두 신호는 원격송신부로 보내지고 원격송신부에서는 8bit A/D 변환기에 의해 디지털값으로 변환되며 지상으로 초당 200 샘플로 송신된다. 그림 6은 제작된 회로부의 모습을 보여주고 있다. 한 장의 PCB에 두 채널의 회로부가 구성되어 있으며 총 4장의 PCB로 구성되어 있다.

2.4 지상 보정

KSR-L-II에 탑재된 오존측정기의 경우 우리나라에서 구축된 지상 보정 실험 시스템의 부재로 인해 일본의 수요자 대학(Tsukuba College of Technology)의 보정 실험실에서 지상 보정 실험을 수행하였으나 KSR-II에 탑재된 오존측정기의 보정 실험은 현재 항공우주연구원의 광학실험실에 구축된 시스템으로 보정 실험을 수행하였다. 식(2)에서 $S(\lambda, \theta)$를 측정하기 위한 실험이며 광학적으로 반응함수는 제작 회사에서 제공한 자료를 참조하였다. 그림 7은 보정 실험 구성도를 나타내고 있다.

먼저 원하는 파장대의 빛을 발산해 주는 광원(light source)의 빛을 모노크로메터(monochromator)에 입사해 주면 모노크로메터는 입사된 빛을 일정한 파장 간격으로 출력해 주게 된다. 모노크로메터로부터 출력된 빛을 간섭 필터에 투과하여 투과되는 빛의 양을 OPM(optical power meter)에서 감지하여 제어 컴퓨터에서 최종 출력값을 얻는다. 이번 보정 실험에서는 세 가지의 광원을 사용하였다. 우선 모노크로메터 자체를 보정하기 위한 수온 랜프가 사용되었으며 자외선 영역의 파장대에 서의 투과 특성을 보정하기 위한 증수스 랜프를 그리고 가시광선 영역에서의 투과 특성을 보정하기 위한 QTH(Quartz Tungsten Halogen) 랜프를 사용하였다. 모노크로메터는 빛의 파장을 0.2nm 간격으로 스캔하였고 스캔 속도 간격은 20msec로 설정하였다. 간섭 필터의 입사되는 빛의 입사각도는 0~25° 구간의 각도에 대하여 실험하였으며 0° 각으로 변화시켜 가면서 실험하였다.

그림 8은 각각의 간섭 필터들의 보정 실험 결과 그래프를 나타내고 있다. 이 그래프들은 광원에 대한 투과 특성을 제거한 순수한 간섭필터만의 투과 특성을 나타낸다. 그래프는 입사각도가 5° 간격으로 그려진 것이다. 간섭필터의 중심 파장은 제작회사에서 제공한 값과 비교하여 보정 실험치 측정한 값의 오차는 최대 3.6nm 이내로

표 1. 간섭필터 중심파장 값 비교

<table>
<thead>
<tr>
<th>간섭필터</th>
<th>중심파장(nm)</th>
<th>측정값(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>255nm</td>
<td>252.9</td>
<td>253.6</td>
</tr>
<tr>
<td>290nm(a)</td>
<td>289</td>
<td>291.4</td>
</tr>
<tr>
<td>290nm(b)</td>
<td>292.2</td>
<td>291.6</td>
</tr>
<tr>
<td>310nm</td>
<td>310.2</td>
<td>313.8</td>
</tr>
</tbody>
</table>
그림 9. 측정 복사감도 비율과 오존기동밀도와 상관관계 그래프

매우 정확한 실험이 이루어졌음을 알 수 있다[표 1 참조]. 간섭필터의 특성상 일부에 입사되는 빛의 각도가 커지면 커짐수록 중심부분이 빠른 쪽으로 이동되는 현상이 있으[5]. 실험 결과 이러한 모습을 확인할 수 있었고 그림 8에서 보듯이 일부 사각도가 커짐에 따라 중심부분이 좌우로 이동되며 빌의 투파율도 작아지는 현상을 확인할 수 있었다.

이러한 수치 데이터들을 이용하면 식(2)에서 \(I(z) / I(z_0) \)의 값과 오존기동밀도인 \(N(z) \)의 두 개의 변수만 남게되며 그림 9와 같은 그래프를 얻을 수 있게 된다. 이렇게 얻어진 그래프를 이용하면 측정된 값으로 오존기동밀도를 계산할 수 있으며 이를 태양빛의 입사각도를 고려하여 고도에 대하여 미분하면 오존기동밀도를 도출해 볼 수 있다.

III. 이온층 전자 측정기

이온층은 태양으로부터 나오는 UV(Ultra Violet), EUV(Extreme Ultra Violet), 및 X-ray와 같이 좌 온 파장 영역의 복사선에 의해 충성 임자가 이온화되어 자유전자와 이온이 존재하는 공간으로써 지상에서 약 1000km에 걸쳐 존재한다. 이온층 측정은 파라모텍을 이용한 관측이 유일한 방법이다. 1960년대부터 파라모텍을 이용한 관측이 활발히 이루어졌고 이온층의 전자 밀도를 관측하는 방법으로는 필스 밴드 랜드백 프로브(Pulse Modulated Langmuir Probe)를 널리 사용하였다. 또한 전자 온도 측정기는 전자온도와 온도 프로브보다 오염의 영향을 적게 받는다는 장점으로 인해 훨씬 좋은 결과를 얻을 수 있다는 것이 그 동안의 많은 파라모텍 및 인공위성 실험을 통하여 검증된 바 있다.

우리나라에서는 1998년 KSR-II를 이용하여 한반도 상공의 고도에 따른 전자 온도, 밀도 그리고 부등 전위에 대한 프로파일을 측정한 바 있다. KSR-III에 탐재되는 이온층 전자측정기는 전자밀도 측정기와 전자온도 측정기가 동시에 탐재 될 예정이며 상호 보완적인 자료 분석을 수행할 것이다. 또한 실제 우주 플라즈마 환경에서의 탐 재체의 정상동작 유무를 판단하기 위하여 일본의 ISAS(Institute of Space and Astronautical Science)에서 보유하고 있는 우주플라즈마 측정기를 이용하여 우주 플라즈마 환경모사 실험을 수행하였고 이번의 플라즈마 환경에서 시스템이 정상 동작함을 확인하였다.

3.1 전자밀도 측정

3.1.1 원리

이온층 플라즈마 환경에 노출된 측정기로부터 측정된 전자지계영역에서의 전류는 다음의 식 (3)으로 나타낼 수 있다[11].

\[
I_e = N_e A_0 \sqrt{\frac{kT_e}{2\pi m_e}} \left(1 + \frac{eV}{kT_e}\right) \quad \text{for} \quad \frac{eV}{kT_e} > 0
\]

여기서 \(k \)는 브호מס 상수, \(m_e \)는 전자 질량, \(e \)는 전자의 전하량, \(N_e \)는 전자 밀도, \(T_e \)는 전자 온도 그리고 \(A \)는 프로브의 면적을 나타낸다. 여기서 프로브에 충분히 큰 전위(potential)를 걸어주면 위의 식은 다음과 같이 간단히 나타낼 수 있다.

\[
I_e = N_e A_0 \sqrt{\frac{eV}{2\pi m_e}}
\]

이 식에서 보듯이 프로브에 입정한 전압 \(V \)를 이용해 주변 이온에 따라 측정된 전류의 변화는 전자 밀도에 비례하게 된다. 따라서 인가 전압에 대한 전류-전압 곡선을 얻을 수가 있고 이 곡선을 이용하여 전자의 밀도를 추정할 수 있게 된다.
3.1.2 셀처부 구성
전자밀도 셀처부는 필스 변조 압력에 프로브 구조를 채택하였다. 프로브는 네 개의 부분으로 나뉘며 임의의 삼각파를 인가해 주는 Guard부와 전자를 모으는 역할을 하는 길고 가느다란 막대 모양의 Collector부가 존재하며 Guard부와 Collector부를 절연시키는 절연부가 존재한다. 그리고 공통의 접지를 이루는 접지부가 있다. Guard부는 알루미늄 채질로 제작되었고 길이 250mm, 직경 2mm인 Collector부는 전기 전도 특성이 좋은 티탄스텐으로 제작되었다. 절연부는 태블론 재질로 제작되었으며 Guard부와 Collector부를 전기적으로 분리하는 기능을 하도록 구성되어 있다. 그림 10은 제작된 셀처부 모습을 보여주고 있다.

그림 10. 셀처부 모습

3.1.3 화로부 구성
그림 11은 전자밀도 측정기의 화로부 구성도를 나타내고 있다. 화로부는 크게 삼각파 발생부, 전류-전압 변환부, 자동이득층부 등으로 나뉜다. 삼각파 발생부에서 주파수가 1Hz이고 진폭이 1-3V의 삼각파를 발생시키는데 주파수를 1Hz로 설정한 이유는 원격 송신부에서 초당 200 샘플로 저장으로 송신하게 되는데 삼각파 한 주기동안 최소한 100개의 데이터 정보를 획득해야 신뢰성 있는 측정이 되기 때문이다. 또한 위의 진폭을 설정한 이유는 고도가 200km이하에서의 부동전위가 수백 mV 정도의 값을 갖기 때문에 부동전위를 기준으로 ±수 V 정도를 스텝할 수 있도록 하기 위함이다. 프로브에 연속적인 전압이 인가됨에 따른 프로브의 오염을 막기 위해 아날로그 MUX를 이용하여 0V의 리셋 신호와 스위칭을 하여 삼각파를 센서부에 툴니모양으로 인가해 준다. 이러한 삼각파를 인가해 주면 센서부에서는 삼각파 신호가 있는 구간에서만 이온들이 모이게 되므로 오염의 효과를 줄일 수 있게 된다. 이렇게 측정된 전류는 전류-전압 변환기에서 전압의 형태로 변환되며 측정된 전류의 값을 수십 μA정도이다. 측정된 전류는 자동이득을 부여하여 부동전위와의 차이만큼 증폭하도록 구성하며 1-5V의 레인지로 출력하기 위해서 자동이득층부를 구성하였다. 자동이득층부의 이득율은 4, 16, 64, 256배를 증폭하도록 구성하였고 자동이득층부에서 출력되는 전압값이 0-5V사이의 값이 되도록 이득하여 자동으로 설정되도록 구성하였다. 최종 출력되는 전압은 프로브에서 측정되는 전압값과 그때의 증폭율이 이는 원격 송신부에서 8bit A/D 컨버터를 통해 디지털로 변환되고 변환된 신호는 지상으로 초당 2000 샘플로 송신된다.

3.2 전자온도 측정기
3.2.1 원리
이온종 플라즈마 환경에 노출된 전자온도를 측정기로부터 측정된 전류 I는 다음의 식 (5)로 나타낼 수 있다[12].

\[I = i_e \exp \left(- \frac{eV}{kT_e} \right) - i_s \]

여기에서 \(i_e = S N_i \sqrt{\frac{kT_e}{2\pi m_e}} \), \(i_s = S N_i eV \).

여기서 \(S_e \)는 전자가 모이는 유효 면적 (effective electron collecting area), \(S_i \)는 이온이 모이는 유효 면적 (effective ion collecting area), \(N_i \)는 이온 밀도, \(V \)는 프로브의 전압, \(T_e \)는 전자온도를 나타낸다. 또한 이온의 전류 \(i_s \)는 로켓의 비행 속도에 비해 이온이 움직이는 속도가 상대적으로 매우 느리기 때문에 센서부에 인가해 주는 전압에 영향을 주지 않는다. 센서부에서 측정되는 전류는 임의로 인가해준 전압과 전자온도에 비례하여 변하게 된다. 프로브에 임의의 전폭이 \(a \)인 전압을 인가했을 때 측정된 신호와 전압을 인가하지 않았을 때 측정된 신호의 전압차와 전폭이 \(2a \)인 인가했을 때의 전압과 전압을 인가하지 않았을 때의 전압차에 대한 비율을 나타내면 식 (6)과 같이 표현할 수 있다.
\[R = \frac{V_{f0} - V_f}{V_{f0} - V_{f0}} = \frac{\Delta V_{f0}}{\Delta V_{f0}} = \frac{\ln[I_0(\frac{ea}{KT_e})]}{\ln[I_0(\frac{2ea}{KT_e})]} \quad (6) \]

이 여기서 \(V_{f0} \)는 2a가 인가되었을 때의 측정 전압, \(V_{f0} \)은 a가 인가되었을 때의 측정 전압 그리고 \(I_0 \)는 \(a \) Bessel 함수다. 식에서 보듯이 \(V_f, V_{f0}, V_{f0} \)를 측정하면 이들의 간과 전자온도 \(T_e \)와 비례한 값을 갖게 된다. 이때 이온층의 플라즈마는 Maxwellian 분포를 하고 있다고 가정하였다. 따라서 측정된 데이터로부터 전자온도에 대한 비율 정보를 획득할 수로서 수치적으로 전자온도의 값을 계산할 수 있다.

3.2.2 센서부 구성

전자온도 측정기의 센서부는 반원형 원판 두 개로 구성된다. 그림 12는 제작된 센서부를 나타내고 있다. 제작은 PCB 기판에 측정 감도가 좋은 금도금으로 되어 있고 측정 건설을 방지하기 위하여 센서부가 장착되는 평판에서 약 93mm 높이에 위치하여 장착된다.

![그림 12. 전자온도 측정기 센서부 시제품](image)

두 개의 원판 중 한쪽의 원판에는 진폭이 2a의 a를 갖는 사인과 신호를 인가해 주고 다른 반대 한쪽의 원판에는 아무런 신호를 인가해 주지 않는다. 이렇게 함으로써 센서부가 이온층에 노출되었을 때 이온층의 부동전위와 임의의 신호를 인가해 주었을 때의 신호를 비교할 수 있다.

제작된 센서 주변에는 금속성 볼트의 사용을 사용해서는 안된다. 이는 센서만 근처에 금속성 볼트를 사용하게 되면 측정된 저항성분이 발생하여 측정 오차를 유발하기 때문이다.

3.2.3 회로부 구성

그림 13은 전자온도 측정기의 회로부 구성도를 나타내고 있다. 먼저 센서부 한쪽 면에 진폭이 800mV, 400mV, 0V이고 주파수가 20KHz인 신호파를 인가시켜 준다. 세 개의 진폭을 갖는 사인파를 순차적으로 인가해 주기 위해서 아날로그 MUX를 이용하여 구성하였으며 800mV 사인파를 250msec 동안, 400mV 사인파는 250msec 동안 그리고 0V 500msec 동안 순차적으로 인가하도록 하였다. 사인파의 주파수는 20KHz로 정한 이유는 이온층에서 전자의 자이로(gyro) 주파수와 이온의 자이로 주파수의 사이의 값을 선택하여 측정에서 이온의 영향을 없애주기 위함이다. 이온의 자이로 주파수는 대략 2-3KHz이며 20KHz 정도의 주파수를 선택하는 것은 적절한 것이다.

사인파가 인가된 평판에서 측정된 값은 센서 측정 필터부를 거치게 된다. 이 필터부는 저항과 커패시터로 이루어져 있으며 센서부 바로 앞단에 커패시터를 달아 출력되는 신호에 DC 부등정위 만큼 전위차가 발생되도록 하였으며 이 신호에서 사인과 신호를 제거하기 위해 매우 큰 임피던스를 갖는 RC 병렬 필터를 장착하여 순수한 부등정위에 의한 전위차만 출력되도록 구성하였다. 따라서 이렇게 출력된 값과 사인파가 인가되지 않은 다른 한쪽의 센서 평판에서 측정된 부등정위의 차이를 차동 측정기에서 추출한 후 LPF(low-pass filter)를 거쳐 원격 수신부로 전달된다. 원격 수신부에서는 전자밀도 측정기에서와 마찬가지로 8-bit A/D 컨버터를 이용하여 디지털 데이터로 변환한 후 초당 200점을 저장으로 송신한다.

그림 14는 탐제용으로 개발된 전자측정기의 센서부와 회로부를 나타내고 있다. 그림에서 (a)
는 전자온도 측정기의 센서부, (b)는 전자밀도 측정기의 센서부 그리고 (c)는 화로부 박스를 보여 주고 있다.

3.3 이온층 환경 모사시험

이온층 전자측정기의 성능 시험을 하기 위해서는 우주공간에서의 진공 환경과 이온 플라즈마 환경을 모사해 주어야 한다. 일본의 ISAS의 우주 플라즈마 실험실에서는 이러한 환경을 모사해 주는 챔버를 구축하고 있다.

그림 15는 우주환경 모사시험 구성도를 나타내고 있다. 챔버는 10⁻⁴~10⁻⁸ torr의 고공 대기층과 우주환경을 모사해 주며, 하단에 확산형 플라즈마 생성장치(Back-diffusion plasma source)가 설치되어 실제 우주 플라즈마 환경을 잘 모사해 준다. 측정기의 센서부와 화로부는 챔버 내부에 위치하고 데이터 시스템(DAQ)과 전원 공급기 등 외부에 위치하여 실시간으로 모니터링 할 수 있도록 구성하였다.

챔버 구성은 N₂ 압력이 6.5X10⁴ torr인 경우와 1.4X10⁴ torr인 경우에 대하여 프리드 전압(Vg), 허리 전압(Vh), 그리고 플레이트 전압(Vp)을 적절히 조합하여 저밀도 전자환경과 고밀도 전자환경을 적절히 모사해 줄 수 있도록 조정하면서 실험을 수행하였으며 총 28개의 환경조건에 대하여 데이터를 취득하였다.

그림 16은 챔버 조건 중 N₂ 압력이 6.5X10⁴ torr일 때 그림의 프레임은 90V, 허리 전압은 2.8V 그리고 플레이트 전압은 200V의 조건에서 취득한 출력 데이터로부터 얻은 그래프이다. (a)는 전자온도 측정기의 출력값을 나타내며 출력 전압값이 0.45을 초과할 경우 배터리의 자체 부드러운 전위로 인한 오류로 것으로 추정된다. (b)는 전자밀도 측정기의 출력값으로부터 얻은 전류-전압 곡선이다. 센서부의 오염이 많은 경우에 센서부의 인가해주주는 삼각형 전압이 상승되는 구간에서의 측정된 값과 전압이 하강하는 구간에서의 측정된 값의 기울기가 차이가 나타나는 허스테리시스 극선 모양이 관측되는데 그림 16의 (b)에서 보듯이 전 구간에 걸쳐 허스테리시스 극선이 매우 작은 힘을 보이며 이로 인해 오염에 의한 효과는 매우 미흡할 수 있다.

이번 실험에서 측정된 데이터 중 전자밀도 측정기 데이터로 계산한 결과 전자밀도는 약 2-4X10⁸ cm⁻³, 전자온도 측정기 데이터로 계산한 결과 전자온도는 630-2360K 정도의 값을 갖는다는 것을 계산해 볼 수 있었다.

로 본 논문에서는 과학로켓에 탑재 가능한 과학 탑재체 중 오존측정기와 이온층 전자측정기의 개발에 관하여 기술하였다. 또한 개발된 오존측정기의 지상보정 실험과 전자측정기의 우주환경 모사실험을 성공적으로 수행하였다. 오존측정기의 지상 보정실험은 한국항공우주연구원에 옮겨 새로 구축된 보정장비를 이용하여 수행하였으며 전자측정기의 우주환경 모사실험은 일본 ISAS의 우주플라즈마 실험실에서 구축되어 있는 플라즈마 챔버를 이용하여 수행하였다.

현재까지 한반도 상공의 오존층 관측은 대부
본 간접적인 방법이었고 KSR-I과 KSR-II를 이용하여 직접적인 관측을 시작하였다. 이렇게 개발된 오존측정기를 이용하여 한반도 상공의 오존층을 관측한다면 오존층 밀도의 고도별 수직 분포를 연구하는데 크게 기여할 것이며 지상 관측과 기타 다른 관측 결과를 비교 분석하여 한반도 상공의 오존층 분포에 대한 연구 신뢰도를 향상시킬 것이다.

최근까지도 이온층의 전자온도 급상승 지역이나 Sporadic E층, 전자밀도가 급격히 줄어드는 지역(biteout region) 등의 특이현상을 규명하기 위하여 이온층 관측을 계속하고 있다. 직접적인 관측 방법은 과학자들이 유일한 방법이며 개발된 이온층 전자측정기를 이용하여 이온층 관측을 수행하면 한반도 상공의 이온층의 기본상태와 특이상 유무 규명 그리고 로켓기계 대전현상 등에 대한 영향을 연구하는데 크게 기여할 수 있을 것이다.

참고문헌

1) 김성환, 이수진, 이재득, "3단형 과학관측로켓용 RF 서브시스템 개발", 한국항공우주학회지, 제29권, 제8호, 2001, pp. 134-141.

3) 이재진 외, "중형과학로켓, KSR-II를 이용한 이온층 전자 밀도 및 온도 분포 측정에 관한 연구",

