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Abstract : Benzothiophene (BT) is decomposed rapidly following a pseudo-first-order kinetics upon
ultrasonic irradiation in aqueous solutions. The rate constant increases with temperature, and pH and
decreases  with increasing initial  benzothiophene concentration. Hydroxybenzothiophenes, dihydroxy-
benzothiophenes, and benzothiophene-dione were identified as intermediates. The evolution of carbon dioxide
and sulfite was also observed during sonochemical reaction. The intermediate study suggests that the
degradation of benzothiophene via OH radical addition is one of the most important degradation mechanism.
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INTRODUCTION

Polycyclic aromatic sulfur hydrocarbons (PASHs)
are the group of toxic and/or mutagenic
compounds' " which are abundant in petroleum
and coal tars. Therefore, these compounds can be
present in the wastewaters from petroleum and
coal liquefaction industries.”” PASHs can biocon-
centrate at magnitude much significant than
sulfur-free  polycyclic aromatic  compounds.™®
PASHs have been shown to readily accumulate in
sediments,” plants and animal tissues.” The con-
ventional activated studge process can not effecti-
vely degrade these toxic compounds.” PASHs are
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among the most refractory residues at conta-
minated sites.”'™"" The low biodegradability of
PASHs suggests that physical-chemical methods
are needed for effective degradation of PASHs in
wastewaters.

In recent years, there has been an increasing
interest in the use of ultrasound to treat organic
contaminants in aqueous solutions."” >” Ultrasonic
decomposition of organic pollutants is brought by
the formation and collapse of high-energy cavita-
tion bubbles. Upon collapse, the solvent vapor is
subjected to the enormous increases in both tem-
perature (up to 5,000 °K) and pressure (up to

28
" Under such extreme

several thousand atm).
conditions the solvent molecules undergo homoly-
tic bond breakage to generate radicals. When

water 1s sonicated, H and 'OH radicals are
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produced,z(” the latter being a strong oxidizing
agent (Ejy= 2.33 V) can react with many organic
pollutants. Additionally, organic compounds in the
vicinity of a collapsing bubble may undergo
pyrolytic decomposition due to the high local
temperature and pressure.””

Much research has been conducted to study
the ultrasonic destruction of aromatic compounds
in water. Petrier et al.'’ proposed that the
ultrasonic degradation of 4-chlorophenol would be
characterized as a stepwise reaction involving a
number of intermediates including hydroquinone
and 4-chlorocatecol. First reaction step leads to
the formation of hydroxyl radicals in the
cavitation bubbles. Hydroxyl radicals are then
dispersed and react with 4-chlorophenol in the
liquid layer surrounding the cavity. Kotronarou et
al.”” reported that p-nitrophenol was degraded
primarily by denitration yielding NO;, NO;,
benzoquinone, 4-nitrocatechol, formate, and oxal-
ate. These reaction products are caused by a me-
chanism involving high-temperature reactions in
the interfacial region of cavitation bubbles due to
the thermal instability of p-nitrophenol. Nagata et
al.’” showed that 95% of hydroxybenzoic acids
were decomposed within an hour and proposed
that the decomposition of hydroxybenzoic acids
occurred mainly via reaction with ‘OH radicals.

Despite the large body of work conducted,
little information is available regarding the me-
chanisms through which sulfur-containing aroma-
tic compounds degrade during sonication. Specifi-
cally, the reaction pathway and the intermediates
and products involved remain unknown. In addi-
tion, the effect of medium conditions and re-
action parameters on the ultrasonic degradation
rate of PASHs have not been investigated.

The objectives of this study are to evaluate an
ultrasonic process for the treatment of PASHs in
water and to elucidate the reaction pathway and
mechanism of ultrasonic degradation of PASHSs
exemplified by benzothiophene (BT). Benzothio-
phene was selected for the study because it has
the basic structural unit of most PASHs and is
relatively soluble in water. Several reaction inter-
mediates were identified.

Materials and Methods

Benzothiophene (99%) and 4-0x0-4,5,6,7-
tetrahydrobenzothiophene (97%) were obtained
from the Aldrich Chemical Company (Milwau-
kee, WI). Benzothiophene-sulfur dioxide (98%)
was obtained from Lancaster Chemical Company
(Lancaster, PA). Stock solution of BT was
prepared by dissolving an excess amount of
benzothiophene in deionized water in a stirred
flask sealed with Teflon-lined rubber stopper. At
different elapsed times, the solution was filtered
(0.45 pm, Cole-Parmer, Vernon Hills, IL), ex-
tracted with hexane, and analyzed with a gas
chromatograph (Model 5890 GC Series I,
Hewlett-Packard, San Fernando, CA) equipped
with a mass selective detector (5972 MSD,
Hewlett-Packard). The concentration of the
solution was determined based on external BT
standards in hexane. The aqueous concentration
of BT reached an equilibrium value of 0.21 mM
in about 2 days.

Experiments were conducted using a 40 mL
glass reactor (Ace Glass, Vineland, NJ) and an
ultrasonic generator (20 kHz, ultrasonic homo-
genizer 4710, Cole-Parmer, Vernon Hills, IL)
equipped with a titanium probe transducer (Model
CV 17, Cole Parmer). The reactor was filled with
40 ml of BT solution, leaving no headspace, and
sealed with a Teflon-lined rubber stopper. The
reactor was immersed in a water bath (Frigomix
1495 Water Circulation and Temperature Control
System, Braun Biotech International, Goettingen,
Germany) to maintain a constant temperature. An
automatic pH controller (model pH-22, New
Brunswick Scientific Co., Edison, NJ) with 0.1 N
NaOH and 0.1 N HCIO4 was used to keep the
pH at a constant value. Experiments were run
twice in the following conditions: (1) temperature
(20, 30, 40, 50, and 65°C), (2) pH (3, 5, 7, and
9) and (3) initial concentration of benzothiophene
(0.01, 0.04, 0.1, and 0.21 mM)

At different elapsed times, 0.5 ml aqueous
samples were withdrawn and extracted with 1mL
hexane. Two yL of the extract was analyzed by
GC/MS,  while the remaining extract was
analyzed using an UV-visible spectrophotometer
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(HP 8452A Diode-array, Hewlett-Packard).

For GC/MS identification of intermediates, a
40-mL aqueous sample was transferred to a glass
tube and gently evaporated to dryness using a
stream of nitrogen. The residue was re-dissolved
in 0.5 mL hexane. GC/MS analysis was per-
formed using a 30 m HP-5MS capillary column.
The injection port temperature was 250°C. The
column temperature was held constant at 50°C
for 2 min and then increased to 250°C at a ramp rate
of 8 C/min. The GC/MS interface line was main-
tained at 300°C. The range of ion mass scanned
was from m/z 50 to 550. The mass spectra were
produced by electron impact (70 eV).

Concentration of sulfite and sulfate ions were
measured using an ion chromatograph (BioLC,
Dionex, Marlton, NJ) equipped with a Dionex
pulsed electrochemical detector and a Dionex
AS-11 metal-free anion column. The eluent was a
mixture of 87% deionized water, 10% 0.2 N
NaOH, and 3% acetonitrile. The flowrate was 1
mL/min and the volume of the injection loop
was 50 yL. Concentration of sulfide ion was
measured by adding sulfide (Hach
Company, Loveland, CO) into a 2 mL aliquot,
diluting to 25 mL with distilled water and
analyzed by a visible spectrophotometer (Hach
DR/2000, Loveland, CO) at a wavelength of 665
nm. Concentration of carbon dioxide was mea-
sured by the flow injection analysis method.””

reagents

RESULTS AND DISCUSSION

Decomposition of Benzothiophene

The concentration of benzothiophene decreases
exponentially with reaction time, where little
decomposition was observed in the controls. The
degradation
following equation:

rate can be expressed by the

--dd 4 (1)

where C is the concentration of BT at time t, k
is the pseudo-first- order rate constant and t is
the sonication time.

Figure 1(a) shows a decrease in decomposition

efficiency over
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decomposition. (a) temperature (20, 30,
40, 50, and 65°C) (b) pH (3, 5, 7,
and 9) (c) the reciprocals of the
initial rates vs. the reciprocals of the
initial  benzothiophene concentrations
(0.01, 0.04, 0.1, and 021 mM).
Experimental conditions: total volume
= 40 mL, ionic strength = 0.05 M
NaClOs, energy intensity = 300 watts/
cm’, temperature = 25 °C (except b),
pH = 5 (except c), initial concentra-
tion = 0.12 mM (except d).
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Figure 2. Identification of sonochemical reaction intermediates.

(a) total ion chromatogram of BT (b) mass spectrum of BT (c) mass spectrum of Benzothio-
phene-2,3-dione (d) mass spectrum of hydroxylbenzothiophene (e) mass spectrum of 2,3-

dihydroxylbenzothiophene. Experimental conditions: reaction time
300 watts/em’, pH = 5, initial concentration

0.05 M NaClO..

rarefaction cycle causes boiling of the solution
(as a result of the reduced pressure generated)
and any cavitation bubbles formed would fill
almost instantaneously — with  water  vapor.
Collapse of these vapor-filled bubbles during the
compression cycle would be cushioned thereby
reducing the extremes of temperature and
pressure generated.m Over a rather narrow tem-

120 min, energy intensity =
0.2 mM, temperature = 25°C, ionic strength =

perature range between 20 and 50°C, an
increasing reaction rate was observed as the
solution temperature increased. Because this
reaction is mass-transfer limited and the cushion
effect did not occur over the narrow temperature
range studied. The effect of temperature on the
ultrasonic  decomposition of organic compounds
has been reported. Gondrexon et al."”” studied
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the decomposition of the chlorophenol in the
range of 25 to 50°C and found that the higher
temperature the larger was the reaction rate. It
seems that the collision frequency of chloro-
phenol molecules in solution increased as the
solution temperature increased from 25 to 50°C.
Koszalka™ reported high removal efficiency at
85% in the temperature range of 25 to 35°C for
tetrachloromethane and an efficiency of 48%
between 85 and 95°C. Much lower decomposi-
tion efficiency of tetrachloromethane between 85
and 95°C appears to be caused by cushion
effect in high solution temperature. In the tem-
perature range of 20 to 50°C, results indicated
that the Arrhenius equation has the following
expression:

Ink =lnA;E%—/£:—l.57+(_2020) (2 =096) (2)

where k is the rate constant (sec"), T is the
absolute temperature (K), A is the frequency
factor (sec'), Ea is the activation energy
(kJ/mole), and R is the gas constant (kJ/mole-K).
Arrhenius equation has been used to describe the
effect of temperature on reaction rates in hetero-
geneous systems with good degree of satis-
o~ Generally, a heterogeneous reaction
such as the one studied here, is mass-transfer
limited if the activation energy is low (< 42
kJ/mole) and reaction-controlled if the activation
energy is high (> 42 kJ/mole).”

The low apparent activation energy (Ea) of
16.8  kJ/mole suggests that the ultrasonic
decomposition of benzothiophene is controlied by
mass transfer process, e.g., diffusion.”* Most

faction.

likely, the apparent rate reflects the rate at which
benzothiophene molecules diffuse from the bulk
solution to the reaction zone; i.e., the solu-
tion-bubble interfacial regions where temperature
and OH radical concentrations are high. In a
related study, ultrasonic degradation of chloro-
phenol was also found to be controlled by
diffusion."”’

Figure 1(b) shows that the reaction rate is
approximately constant in the pH range of 3 to
6 and increases as pH becomes greater than 6.
Kotronarou et al.'” found that the reaction rate

of p-nitrophenol decreased with increasing initial
pH from 3 to 10, whereas Wu et al.’® showed
that the reaction rate of carbon tetrachloride
increased with increasing initial pH from 3 to 9.
Kim et al'” reported that the sonochemcial
oxidation rate of dibenzothiophene slightly in-
creased with increasing pH. The conflicting
observations may be explained by the solubility
of the parent compounds and their intermediates
at different pH. Assuming most of the reaction
takes place at the bubble-liquid interface,*®
compounds that become ionized (and hence
more soluble) at higher pH (e.g., nitrophenol)
would partition less to the interface and hence
exhibit lower reaction rates at higher pH. On the
other hand, intermediates that dissociate at
higher pH may become ionized and become
partitioned into the aqueous phase at higher pH,
providing more access of the non-ionized parent
tetrachloride  and
benzothiophene) to the interface.

compound (e.g. carbon

Figure 1(c) shows the relationship between the
initial  reaction rate (ry) and the initial
benzothiophene concentration (Cp). When the
reciprocals of the initial rates are plotted against
the reciprocals of the initial benzothiophene
concentrations using the Langmuir- Hinshelwood
equation (equation 3), a linear relationship is
obtained with r* = 0.99:

LI S (r* =0.99)
r k kKC, 3)

where k is the rate constant (mM/min) and K is
the adsorption coefficient (mM'l). From Figure
1(c), the k and K values are 3.15%10°
mM-min” and 15.6 mM, respectively. The good
fit with Langmuir-Hinshelwood relationship indi-
cates that the decomposition of benzothiophene is
likely to occurred at the limited interfacial area
of cavitation bubbles. A proportional relationship
between the reciprocals of initial rates and the
initial benzothiophene concentrations were also
observed from a reaction of an organic pollutant

on limited surface area of TiO- thin film.*”

ENVIRONMENTAL ENGINEERING RESEARCH/VOL. 8, NO. 2, 2003



Degradation of Benzothiophene by Ultrasonic Irradiation : Intermediates and Parameters 77

Identification of Benzothiophene
Intermediates

The chromatogram of BT and intermediates is
shown in supporting information, Figure 2(a).
The mass spectra of BT and its intermediates
are shown in Figure 2(b) to (e). The mass
spectra were compared with the computer
database of the National Institute of Science and
Technology (NIST) mass spectral library and the
published mass spectra of BT intermediates.*™**”

The mass spectra of peaks at 6.57, 10.00, and
11.04 min have a near 100 : 4.4 ratio based on
the isotope ion peaks at m/z values of M’ and
(M+2). This ratio indicates the presence of a
sulfur atom (Figure 2(b) to (e)).

The m/z value of the molecular ion of the
peak at 9.94 min (Figure 2(c)) differs from that
of peak at 11.04 min (Figure 2(e)) by 2. This
difference indicates that the reaction intermediate
at 994 min has two less hydrogen atoms than
the intermediate at 11.04 min has.

The peak at 9.94 min has major ions at m/z
(percentage of intensity, proposed composition of
jons) 164 (5, [M]"), 136 (100, [M-CO]’), and
108 (45, [M-CO-CO]’). This mass spectrum is
identical to that obtained from an authentic
standard, benzothiophene—2,3-dione.48)

The m/z value of the molecular ion of the
peak at 11.04 min (Figure 2(e)) differs from that
of peak of benzothiophene (Figure 2(b)) by 32.
This difference indicates that the reaction
intermediate at 11.04 min has two more oxygen
atoms than benzothiophene.

The peak at 11.04 min has major ions at m/z
166 (36, [M]), 137 (100, [M-COH]), 109 (59,
[M-COH-CO]"), and 76 (15, [M-COH-COH-S]").
Its spectrum is similar to that of dihydroxylben-
zothiophene.

The m/z values of the molecular ions of the
peaks at 10.00, 10.07, 10.20, and 10.25 min
(Figure 2(d)) differ from that of benzothiophene
(Figure 2(b)) by 16. These difterences indicate
that the reaction intermediates at 10.00, 10.07,
10.20, and 10.25 min have one more oxygen
atom than benzothiophene.

The peaks at 10.00 min has major ions at

m/z 150 (94, [M]"), 122 (74, [M-CO}’), and 121
(100, [M-CHO]"). The peaks at 10.07, 10.20,
and 10.25 min have mass spectra similar to that
obtained from hydroxybenzothiophene as shown
in Figure 2(d)." The mass spectra correspond
potentially to the isomers 2-, 3-, 4-, 5-, 6-, or
7-hydroxybenzothiophene. Among them, the
peaks at 10.07 and 10.25 min appear to be 2-
hydroxy-benzothiophene and  3-hydroxybenzo-
thiophene. It has been reported that the major
reaction products retaining the intact benzene
ring such as sulfobenzoic acid were obtained
from all radical reactions for benzothiophene and
methy]-benzothiophenes;i()‘s" The thiophene ring
with smaller resonance energy (29 kcal/mole)
appears to be more reactive than the benzene
ring with the resonance energy (36 kcal/

52,83
mole).™

Reaction Mechanism

Based on the hydroxylated intermediates
identitied above, it is possible to propose a
reaction pathway for the ultrasonic decompo-
sition of benzothiophene in aqueous solution.
The reaction begins with the generation of OH
radicals mainly from sonolytic decomposition of
water. The radicals can either directly react with
the organic species at the bubble-water interface
or diffuse into the bulk solution and react with
the organic compounds in the solution. In both
cases, reactions lead to formation of hydro-
xylated products such as hydroxybenzothiophene
and dihydroxy-benzothiophene. Eventually, these
intermediates will be mineralized to end pro-
ducts such as carbon dioxide and inorganic
sulfur species.

The first step of the reaction is the OH
radical addition, which yields the 3-hydroxy-2,3-
dihydrobenzothiophene. The thiophene ring moie-
ty is more susceptible to the hydroxyl radicals
than the benzene moiety’”"" because thiophene
ring with a resonance energy of 29 kcal/mole
appears o be more reactive than benzene ring
with a resonance energy of 36 keal/mole.™™
After the addition of the first OH radical,
3-hydroxy-2,3-dihydrobenzothiophene  can  be
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transformed to 3-hydroxybenzothiophene by the
elimination of a proton to recover the aromatic
resonance stability at the thiophene ring moiety.
The electron-releasing effect of OH through
resonance increases the susceptibility of thio-
phene ring moiety to the electrophilic attack of
OH radical.’” Then further reaction with OH
radical generates 2,3-dihydroxybenzothiophene
as a main intermediate product. The 2,3-
dihydroxybenzothiophene undergoes further radi-
cal reaction to yield the benzothiophene-
2,3-dione. Andersson and Bobinger’™" reported
the formation of sulfobenzoic acid and quinone
during photochemical degradation of benzo-
thiophene. Subsequent cleavage of the quinone
would result in the formation of organic acids,
as has also been observed in Fentons reaction.””
Carbon dioxide and sulfite were detected as
reaction products.

CONCLUSION

Benzothiophene (BT) is decomposed rapidly
following a pseudo-first-order kinetics upon
ultrasonic irradiation in aqueous solutions. The
rate constant increases with temperature, and pH
and decreases with increasing initial benzothio-
phene concentration. Hydroxybenzothiophenes,
dihydroxy-benzothiophenes, and benzothiophene-
dione were identified as intermediates. The inter-
mediate study suggests that major portion of the
benzothiophene decomposition occurs via OH
radical addition. The first step of the reaction is
the OH radical addition, which yields the 3-hy-
droxy-2,3-dihydrobenzothiophene. After the addi-
tion of the first OH radical, 3-hydroxy-2,3-
dihydrobenzothiophene can be transformed to 3-
hydroxybenzothiophene. Then further reaction
with OH radical generates 2,3-dihydroxybenzo-
thiophene as an intermediate product. The 2,3-di-
hydroxybenzothiophene undergoes further radical
reaction to yield the benzothiophene-2,3-dione.
Subsequent cleavage of the benzothiophene-2,3-
dione would result in the formation of quinone,
sulfonic acid, and organic acids. Carbon dioxide
and sulfite were detected as reaction products.
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