DOI QR코드

DOI QR Code

Shape Recovery Analyses of SMA Actuator-Activated Composite Shells Considering 3-D SMA Material Behaviors

3차원 거동이 고려된 형상기억합금 작동기 부착 복합재 쉘의 변형해석

  • Published : 2003.05.01

Abstract

Shape memory alloys (SMA) are often used in smart structures as active components. Their ability to provide large recovery forces and displacements has been useful in many applications, including devices for artificial muscles, active structural acoustic control, and shape control. Based on the 3-dimensional SMA constitutive equation in this paper, the radial displacement control of externally pressurized circular and semicircular composite cylinders under external pressure with a thin SMA layer bonded on its inner surface or inserted between composite layers in investigated using 3-dimensional finite element analysis. Upon actuation through resistive heating, SMAs start to transform from martensitic into austenitic state, simultaneously recover the prestrain, and thus cause the composite cylinders to go back to their original shapes of the cylinder cross-sections.

형상기억합금은 스마트 구조물에서 작동기로 널리 쓰인다. 형상기억합금은 초기변위를 부고 열을 가하게 되면 단위 부피당 큰 회복력과 변위를 발생한다. 형상기억합금의 이론 특성은 인공근육, 작동기, 소음 및 진동감쇠, 형상의 변형 제어 등에 응용될 수 있다. 본 논문에서는 형상기억합금의 3차원 비선형 구성방정식을 이용하여 재료의 거동특성을 해석하고, 형상기억합금이 부착된 스마트구조로 응용될 수 있는 공기 흡입 덕트, 항공기 및 잠수함 동체 등의 구조를 압력이 존재하는 원형 및 복원을 해석하였다. 수치해석결과, 형상기억합금 엑츄에이터가 내압 하에서 작동하자 단면은 변형전의 모습(낮은 응력상태)으로 회복되었다.

Keywords

References

  1. Miyaszki, S., "Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni alloys," Metallurgical Transactions, Vol. 4, 1997, pp.115-120. https://doi.org/10.1007/BF02649610
  2. Chekaoui, M., Sun, Q. P. and Song, G. Q., "Mechanics Modeling of Composite with Ductile Matrix and SMA Reinforcement," International Journal of Solids and Structures, Vol. 37, 2000, pp.1577-1594. https://doi.org/10.1016/S0020-7683(98)00332-1
  3. 배성민, 이호준, 박현철, 황운봉, "형상기억합금과 압전세라믹을 이용한 보의 형상제어", 대한기계학회논문집 A, 제23권 8호, 1999, pp.1407-1416.
  4. Tanaka, K., "A Thermomechanical sketch of Shape Memory Effect: One Dimensional Tensile Behavior," Res Mechanica, Vol. 18, 1986, pp.251-263.
  5. Liang, C. and Rogers, C. A., "The Multi-dimensional Constitutive Relation of Shape Memory Alloys," Journal of Engineering Mathematics, Vol. 26, 1992, pp.429-443. https://doi.org/10.1007/BF00042744
  6. Brinson, L. C. and Lammering, R., "Finite Element Analysis of the Behavior of Shape memory Alloys and Their Applications," International Journal of Solids and Structures, Vol. 30, 1993, pp.3261-3280. https://doi.org/10.1016/0020-7683(93)90113-L
  7. Epps, J. J. and Chopra, I., "Comparative Evaluation of Shape Memory Alloy Constitutive Models with Test Data," 38th AIAA SDM Conference and Adaptive Structures Forum, 1997.
  8. Harsha, P. and Chopra, I., "Experimental Characterization of Ni-Ti Shap Memory Alloy Wires under Uniaxial Loading Conditions," Journal of Intelligent Material Systems and Structures, Vol. 11, 2000, pp.272-282.
  9. Boyd, J. G. and Lagoudas, D. C., "A Thermodynamic Constitutive Model for the Shape Memory Alloy Materials, Part I: the Monolithic Shape Memory Alloys," International Journal of Plasticity, Vol. 12, 1996, pp.805-842. https://doi.org/10.1016/S0749-6419(96)00030-7
  10. Trochu, F. and Qian, Y. Y., "Nonlinear Finite Element simulation of Superelastic Shape Memory Alloy Part," Computers and Structures, Vol. 67, No. 5, 1997, pp.799-810.
  11. Blonk, B. J. and Lagoudas, D. C., "Actuation of Elastomeric Rods with Embedded Two-way Shape Memory Alloy Actuators," Smart Materials and Structures, Vol. 7, 1998, pp. 771-783. https://doi.org/10.1088/0964-1726/7/6/005
  12. Tokuda, M., Sugino, S. and Inaba, T., "Two-way Shape Memory Behavior Obtained by Combined Loading Training," Journal of Intelligent material Systems and Structures, Vol. 12, 2001, pp. 289-294. https://doi.org/10.1106/7R8V-CUYY-UKJW-XD5C
  13. Naito, H., Sato, J., Funami, K, Matsuzaki, Y. and Ikeda, T., "Analytical Study on Training Effect of Pseudoelastic transformation of Shape Memory Alloys in Cyclic Loading," Journal of Intelligent material Systems and Structures, Vol. 12, 2001, pp. 295-300. https://doi.org/10.1106/1H1M-208B-7BHJ-67JD
  14. Bo, Z. and Lagoudas, D. C., "Thermomechanical Modeling of Polycrystalline SMAs under Cyclic Loading, Part III," International Journal of Engineering Science, Vol. 37, 1999, pp. 1175-1203. https://doi.org/10.1016/S0020-7225(98)00115-3
  15. Lagoudas, D. C., Bo, Z., and Qidwai, M. A., "A Unified Thermodynamic Constitutive Model for SMA and Finite Element Analysis of Active Metal Matrix Composites," Mechanics of Composite Materials and Structures, Vol. 3, 1996, pp.153-179. https://doi.org/10.1002/(SICI)1234-986X(199606)3:2<153::AID-MCM36>3.3.CO;2-J
  16. Qidwai, M. A. and Lagoudas, D. C., "Numerical Using Return Mapping Algorithms," International Journal for Numerical Methods in Engineering, Vol. 47, 2000, pp. 1123-1168. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N
  17. Ortiz, M. and Simo, J. C., "An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Relations," International Journal for Numerical Methods, Vol 23, 1986, pp.353-366. https://doi.org/10.1002/nme.1620230303
  18. Bo, Z. and Lagoudas, D. C., "Thermomechanical Modeling of Polycrystalline SMAs under Cyclic Loading, Part I: Theoretical Derivations," International Journal of Engineering Science, Vol. 37, 1999, pp.1809-1840.
  19. Hebda, D. A. and White, S. R., "Structural Behavior of SMA Composite Beams," Adaptive Material Systems, ASME, AMD-Vol. 206/MD-Vol. 58, pp. 111-119.
  20. Kim, C., Park, B. S., Goo, N. S., "Shape Changes by Coupled Bending and Twisting of SMA-embedded Composite Beams," Smart Materials and Structures, Vol. 11, 2002, pp.519-526. https://doi.org/10.1088/0964-1726/11/4/306
  21. Lagoudas, D. C., Moorthy, D., Qidwai, M. A. and Reddy, J. N., "Modeling of the Thermomechanical Response of Active Laminates with SMA Srips Using the Layerwise Finite Element Method," Journal of Intelligent Materials and Structures, Vol. 8, 1997, pp. 476-488. https://doi.org/10.1177/1045389X9700800601
  22. Boyd, J. G. and Lagoudas, D. C., "A Thermodynamical Constitutive Model for Shapr Memory Materials. Part I.," International Journal of Plasticity, Vol. 12, No. 6, 1996, pp. 805-842. https://doi.org/10.1016/S0749-6419(96)00030-7
  23. Truesdell, C. and Noll, W., "The Non-linear Field Theories of Mechanics," Springer Berlin, 1965.
  24. Gillet, Y., Patoor, E. and Berveiller, M., "Calculation of Pseudoelastic Elements using a Non-Symmetrical Thermomechanical Transformation Criterion and Associated Rule," Journal of Intelligent Materials and Technology, vol. 9, 1998, pp.366-378.