Sequential Changes of Pericarp Ultrastructure in Citrus reticulata Hesperidium

Citrus reticulata 감과 과피 내 미세구조 변화

  • 김인선 (계명대학교 자연과학대학 생물학과)
  • Published : 2003.03.01

Abstract

Ultrastructural changes of the pericarp in Citrus reticulata has been investigated during hesperidium abscission. The pericarp was composed of compactly arranged parenchyma cell layers during early stages of fruit development. The outermost exocarp was green and active in photosynthesis. However, cells in the exocarp soon changed into collenchyma cells by developing unevenly thickened walls within a short time frame. As the fruit approached maturation, the chlorophyll gradually disappeared and chloroplasts were transformed into carotenoid-rich chromoplasts. In the mature fruit the exocarp consisted of large, lobed collenchyma cells with primary pit fields and numerous plasmodesmata. The immature mesocarp was a relatively hard and thick layer, located directly under the exocarp. With development, the deeper layers of the exocarp merged into the white, spongy mesocarp. Before separation of the hesperidium from the plant, some unusual features were detected in the plasma membrane of the exocarp cells. The number of small vacuoles and dark, irregular osmiophilic lipid bodies also increased enormously in the exocarp collenchyma after the abscission. They occurred between the plasma membrane and the wall, and invaginated pockets of the plasma membrane containing double-membraned vesicles were also frequently noticed. The lipid bodies in the cytoplasm were often associated with other organelles, especially with plastids and mitochondria. The plastids, which were irregular or amoeboid in shape, contained numerous large lipid droplets, and occasional clusters of phytoferritin, as well as few loosely -oriented peripheral lamellae. Myelin-like configurations of membrane were frequently observed in the vacuoles, as was the association of lipid bodies with the vacuolar membrane. Most vacuoles had an irregular outline, and lipid bodies were often connected to the tonoplast of the vacuoles. The structural changes underlying developmental, particularly to senescence, processes in various hesperidium will be reported in the separate paper.

Citrus reticulata 감과 과피조직 내에서 탈리를 전후하여 신속하게 진행되는 특정 미세구조의 분화양상을 전자현미경적으로 연구하였다. 특히, 색소체 전환이 진행되어 뚜렷한 외과피층을 이루는 후각세포 내에서 일어나는 미세소기관 분해물질의 형성 및 특성에 초점을 두어 연구하였다. 색 변화가 수반된 발달 중의 외과피 유세포들은 세포벽이 비후되면서 1차공역이 잘 발달하는 후각세포로 분화하며, 대부분의 색소체는 유색체로 전환되어 티라코이드는 거의 소실되고 지질입자를 다량 함유하는 불규칙적인 형태로 변형되었다. 이때 세포막이나 액포막에서는 국부적으로 형성된 수많은 소낭들이 집적되어 세포질 내부로 이동하였고, 세포간 1차공역에 발달하는 원형질연락사를 통한 소낭의 집적현상 또한 빈번히 일어났다. 집적된 소낭들은 융합되어 전자밀도가 높은 구형 또는 일정한 형태가 없는 구조(EDB)로 되며, 이동하여 엽록체, 미토콘드리아 등의 주요 세포소기관을 점차 포위하였다. 소액포들은 융합하여 거대액포가 되며, 세포질 및 EDB에 포위된 소기관들은 점차 분해되기 시작하였다. EDB는 리파제 확인실험에 의해 지질성 물질로 이루어진 구조로 확인되었다. 과피발달 초기에 선행된 중과피 분화는 세포 내에서 급격히 진행된 용해현상에 의해 수많은 소액포들로 이루어진 거대한 세포 공강을 형성하며 밀착되어 불규칙적인 세포벽과 함께 해면성으로 되었다. 이와 같이 본 연구에서는 감과가 식물체에서 분리되기 직전에서부터 탈리 후까지 일어나는 과피의 발달 및 노화현상을 추적하였다.

Keywords

References

  1. Burns JK, Achor DS, Echeverria E: Ultrastructural studies on the ontogeny of grapefruit juice vesicles (Citrus paradisi Macf. cv, Star Ruby), Int J Plant Sci 153: 14 25, 1992 https://doi.org/10.1086/297002
  2. Burns JK, Achor DS, Echeverria E: Carpellary outgrowth development in the endocarp of grapefruit, Citrus paradisi (RutaceaB), Amer J Bot 81 :760 769, 1994 https://doi.org/10.2307/2445656
  3. Esau K: Anatomy of Seed Plants, John Wiley & Sons, New York, pp,431 440, 1979
  4. Fahn A: Plant Anatomy, Pergamon Press, Oxford, pp, 503 508, 1990
  5. Fahn A, Shomer I, Ben Gera I: Occurrence and structure of epicuticular wax on juice vesicles of Citrus fruit, Ann Bot 38: 869 872, 1974 https://doi.org/10.1093/oxfordjournals.aob.a084879
  6. : Regulatory aspects of chloro chromoplast interconvensions in senescing Citrus fruit peel. Isr J Bot 47 :123 130, 1988
  7. Goldschmidt EE, Hubennan M, Goren R: Probing the role of endogenous ethylene in the de greening of citrus fruit with ethylene antagonists, Plant Growth Reg 12: 325 329, 1993 https://doi.org/10.1007/BF00027214
  8. Gross J: Pigments in Fruits, Acadmic Press, London, p, 303, 1987
  9. Holtzhausen LC: Creasing: fomulating a hypothesis, In: Matsumoto K, ed, Proc, Int. Soc, Citriculture, Vol. I, pp, 201 204, Okitsu Fruit Tree Research Station, Shizuoka, 1982
  10. Ji SY, Kim IS: Structural features of various trichomes developed in Sarvinia natayls, Kor J Electron Microsc 32: 319 327, 2002
  11. Kale PN, Adsule PG: Citrus, In: SalWlkhe OK, Kadam SS, eds, Handbook of Fruit Science and Technology, pp, 39 65, Marcel Dekker Inc' New York, 1995
  12. Kesterson JW, Braddock RJ: Total peel oil content of the major Florida citrus cultivars, J Food Sci 40 : 931 923, 1995 https://doi.org/10.1111/j.1365-2621.1975.tb02236.x
  13. Kim TJ: Korean Resources Plants, Seoul National University Press, p, 270, Seoul, 1996
  14. Koch KE, Avigne WT: Postphloem, nonvascular transfer in citrus: kinetics, metabolism and sugar gradients, Plant Physiol 93: 1405 1416, 1990 https://doi.org/10.1104/pp.93.4.1405
  15. Koch KE, Lowell CA, Avigne WT: Assimilate transfer through citrus juice vesicle stalks: a nonvascular portion of the transport path, In: Cronshaw J, Lucas WJ, Giaquinta RT, eds, Phloem Transport, pp, 247 258, New York, Alan Liss, 1986
  16. Lewis PR: Other cytochemical methods for enzymes, In: Lewis PR, Knight DP, eds, Staining Methods for Sectioned Material. 3rd ed, North Holland Publishing Co' Amsterdam, pp, 268 269, 1982
  17. Mauseth JD: Plant Anatomy, The Benjamin/Cummings Publishing Co' Menlo Parle. pp, 439 445, 1988
  18. Monselise SP: Citrus fruit development: endogenous systems and external regulations, In: Grierson W, ed, Proceedings International Society of Citriculture, Vol. 2, pp, 664 668 ISC, Lalce Alfred, 1978
  19. Monselise SP: Citrus, In: Monselise SP, ed, Handbook of Fruit Set and Development, pp, 87 108, CRC Press, Boca Raton, 1986
  20. Nii N, Coombe BG: Anatomical aspects of juice sacs of satsuma mandarin in relation to translocation, J Japan Soc Hort Sci 56:376 381, 1988
  21. Robinson DG, Baumer A, Hinz G, Hohl I: Vesicle transfer of storage proteins to the vacuole: the role of the Golgi apparatus and multivesicular bodies, J Plant Physiol 152: 659 667, 1998a https://doi.org/10.1016/S0176-1617(98)80027-8
  22. Robinson DG, Galili G, Herman E, Hillmer S: Topical aspects of vacuolar protein transport: autophagy and prevacuolar comparhnents, J Exp Bot 49:1263 1270, 1998b https://doi.org/10.1093/jexbot/49.325.1263
  23. Robinson DG, Rogers JC, Hinz G: Post Golgi, prevacuolar comparhnents, In: Robinson DG, Rogers JC, eds, Vacuolar Compartments, pp, 270 298, Sheffield Academic Press, Sheffield, 2000
  24. Shomer I, Ben Gem I: Epicuticular wax on the juice sacs of citrus fruits: a possible adhesive in the fruit segments, J Food Sci 40: 925 930, 1975 https://doi.org/10.1111/j.1365-2621.1975.tb02235.x
  25. Spiegel Roy P, Goldschmidt EE: Biology of Citrus, Cambridge University Press, Cambridge, pp, 88 125, 1996
  26. Thomson WW: Ultrastructural development of chloroplasts in Valencia oranges, Bot Gaz 127: 133 139, 1966 https://doi.org/10.1086/336354
  27. Thomson WW, Platt Aloia K: Ultrastructure of the epidennis of developing, ripening, and senescing Naval oranges, Hilgardia 44 :60 82, 1976
  28. Tisserat B, Jones 0, Galletta PO: Juice vesicle populations in Citrus fruit. Bot Gaz 151 :64 72, 1990 https://doi.org/10.1086/337806