DOI QR코드

DOI QR Code

Activity Changes of Supported Nickel Catalysts with Respect to Ni Loading

니켈 담지촉매의 니켈 담지량에 따른 활성 변화

  • Kim, Sang-Bum (Department of Chemical Engineering, Myongji University) ;
  • Park, Eun-Seok (Department of Chemical Engineering, Myongji University) ;
  • Cheon, Han-Jin (Department of Chemical Engineering, Myongji University) ;
  • Kim, Young-Kook (Department of Chemical Engineering, Myongji University) ;
  • Kim, Myung-Soo (Department of Chemical Engineering, Myongji University) ;
  • Park, Hong-Soo (Department of Chemical Engineering, Myongji University) ;
  • Hahm, Hyun-Sik (Department of Chemical Engineering, Myongji University)
  • 김상범 (명지대학교 공과대학 화학공학과) ;
  • 박은석 (명지대학교 공과대학 화학공학과) ;
  • 천한진 (명지대학교 공과대학 화학공학과) ;
  • 김영국 (명지대학교 공과대학 화학공학과) ;
  • 김명수 (명지대학교 공과대학 화학공학과) ;
  • 박홍수 (명지대학교 공과대학 화학공학과) ;
  • 함현식 (명지대학교 공과대학 화학공학과)
  • Published : 2003.09.30

Abstract

Synthesis gas is commercially produced by a steam reforming process. However, the process is highly endothermic and energy-consuming. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.

Keywords

References

  1. I. Wender, FueI Process. Tech., 48, 189(1996) https://doi.org/10.1016/S0378-3820(96)01048-X
  2. M. A. Pena, J. P. Gomez, and J. L. G. Fierro, AppI. Catat. A: Gen., 144, 7(1996) https://doi.org/10.1016/0926-860X(96)00108-1
  3. R. Craciun, B. Shereck, and R, J, Gorte,Catat. Lett., 51, 149 (1998) https://doi.org/10.1023/A:1019022009310
  4. M. C. J. Bradford and M. A. Vannice AppI. Catat. A: Gen., 142, 73 (1996) https://doi.org/10.1016/0926-860X(96)00065-8
  5. S. Wang and G. Q. Lu, Energy & Fuels 10, 896 (1996) https://doi.org/10.1021/ef950227t
  6. J. Z. Luo, Z. L. Yu, C. F. Ng, and C. TAu, J. Catal. 194, 198 (2000) https://doi.org/10.1006/jcat.2000.2941
  7. J. D. Grunwaldt, L. Basini, and B. S.Clausem, J. CataI., 200, 321 (2001) https://doi.org/10.1006/jcat.2001.3211
  8. C. Elmasides and X. E. Verykios, J.CataI., 203, 477 (2001) https://doi.org/10.1006/jcat.2001.3342
  9. Y. Ji, W. Li, H. Xu, and Y. Chen, Catal.Lett., 71(1-2), 45 (2001)
  10. Z. W. Liu, H. S. Roh, K. W. Jun, S. E.Park, and T. Y. Song, Korean J. Chem.Eng., 19, 742 (2002) https://doi.org/10.1007/BF02706962
  11. K. L. Hohn and L. D. Schmidt, Appt.Catal. A: Gen, 211, 53 (2001) https://doi.org/10.1016/S0926-860X(00)00835-8
  12. E. Ruckenstein and Y. H. Hu, Appt. Catat.A: Gen., 183, 85 (1999) https://doi.org/10.1016/S0926-860X(99)00047-2
  13. Y. Zhang, G. Xiong, S. Sheng, and W.Yang, Catalysis Today, 63, 517 (2000) https://doi.org/10.1016/S0920-5861(00)00498-3
  14. K. H. Hofstad, J. H. B. J. Hoebink, A.Holmen, and G. B. Mahn, CatatysisToday, 40, 157 (1998)
  15. H. Y. Wang and E. Ruckenstein, CataI.Lett., 59, 121 (1999) https://doi.org/10.1023/A:1019045210412
  16. H. Y. Wang and E. Ruckenstein, J. CataI.,186, 181 (1999) https://doi.org/10.1006/jcat.1999.2535
  17. M. E. S. Hegarty, A. M. O'Connor, and J.R. H. Ross, CataIysis Today, 42, 25(1998) https://doi.org/10.1016/S0920-5861(98)00073-X
  18. T. V. Choudhary, C. Sivadinarayama, C.C. Chusuei, A. Klinghoffer, and D. W.Goodman, J. Catal., 199, 9 (2001) https://doi.org/10.1006/jcat.2000.3142
  19. H. Provendier, C. Petit, C. Estoumes, S.Libs, and A. Kiennemann, AppI CataI. A:Gen., 180, 163 (1999) https://doi.org/10.1016/S0926-860X(98)00343-3
  20. T. Zhu and M. F. Stephanopoulos, Aool.Catal. A: Gen., 208, 403 (2001) https://doi.org/10.1016/S0926-860X(00)00728-6
  21. S. Tang, J. Lin, and K. L. Tan, Catal.Lett., 51, 169 (1998) https://doi.org/10.1023/A:1019034412036
  22. T. L. Barr, "Modem ESCA: Phnciples andpractice of X-ray photoelectron spectroscopy", 1st ed., CRC Press, Boca Raton(1994)
  23. F. Arena, F. Fruster, A. Parmaliana L.Plyasova, and A. N. Shmakov, J. Chem.Soc. Faraday Trans.. 92, 469 (1996) https://doi.org/10.1039/ft9969200469