위성 발사체를 위한 GPS 안테나 구성

권병문, 김정래, 고정환, 노용래, 최형돈
한국항공우주연구원

GPS Antenna Configurations for Satellite Launcher

Byung-Moon Kwon, Jeongrae Kim, Jeonghwan Ko, Woong-Rae Roh and Hyung-Don Choi

I. 서 론

고기동을 요구하는 위성 발사체에 GPS (Global Positioning System)를 적용할 때에는 매우 큰 저크(Jerk)와 가속도 및 극초음속 속도 등 극한 환경에서 운용되어야 하고, 발사체의 비행궤적과 자세에 따라 위성의 가시성(Visibility)이 좋지 않게 될 수도 있으므로, 지상에서 GPS를 사용할 때보다 훨씬 더 신중하여야 한다. 본 연구에서는 위성 발사체를 위한 GPS 안테나 구성 및 이에 따른 위성의 가시성 문제를 살펴보았다. GPS 안테나의 배치 및 운용에 대한 고찰을 하였으며, 안테나의 배치 및 발사체의 회전에 따른 위성의 가시성 분석도 수행하였다.

위성 발사체에 GPS를 적용하는 경우에 요구되는 중요 사항은 다음과 같다.

① 발사체의 고기동 상태에서도 신호확득과 추적이 이루어져야 한다. 일본의 H-IIA에 사용된 GPS의 경우 최대속도 10 Km/sec, 최대가속도 49.0 m/sec² (5 g), 최대 저크 58.8 m/sec³ (6 g/sec)의 범위 내에서 동작한다[1]. 따라서 위성 발사체에 사용되는 GPS는 이런 극한 환경에서도 신호의 추적을 유지하며 동작하도록 하기 위한 특별한 알고리즘이 요구된다.

② 순간적으로 위성 신호가 차단되어 추적루프(Tracking Loop)가 손실되면, 거의 즉시 재확득(Reacquisition)이 이루어져야 한다. 이는 위성 발사체의 최대속도가 보통 5 10 Km/sec 이므로 1초만 추적루프가 손실되어도 수 Km의 위치오차가 발생하기 때문이다.

③ 발사체의 자세가 바뀌더라도 항상 신호를 수신하기 위해서는 안테나가 구(Sphere) 형태의 패턴(Pattern)을 가져야 한다. 그렇지 않으면 발사체의 모든 비행궤적(Flight Trajectory)과 자세(Attitude)에서 위성 신호를 수신하는 것이 불가능할 수도 있다.

④ 발사체의 위치와 속도는 1 Hz 이상의 속도로 갱신(Update)되어 전산되어야 하며, 정확도가 높아야 한다. H-IIA 발사체에 사용된 GPS는 500 m 내의 위치오차(Position Error)와 10 m/sec 내의 속도오차(Velocity Error)를 갖는다[1].

⑤ GPS 모듈은 발사체의 유토래시스템과 전기적으로 완전히 독립되어야 한다.

⑥ 위성 발사체의 비행임무동안 GPS의 성능과 상태를 실시간으로 측정할 수 있어야 한다.

⑦ 신뢰성(Reliability)을 향상시키기 위한 다중화(Redundancy)를 고려하여야 한다.

이 중에서 ①, ②, ④는 GPS 수신기에 사용되는 알고리즘에 관계되는 사항이고, ③은 GPS 안테나에 요구되는 사항이며, ⑤, ⑥, ⑦은 발사체에 GPS를 설치할 때부가적으로 필요로 하는 사항이다.

II. GPS 안테나의 배치 및 수신기 운용

위성 발사체에 GPS를 사용할 때에는 지상에서 GPS를 사용하는 경우와는 다르게 GPS 수신기와 안테나에 대해 특별한 운용 방법이 요구된다. 본 장에서는 위성 발사체에서의 GPS 수신기와 안테나의 배치 및 GPS 수신기의 운용 문제 등에 대하여 살펴보았다.
2.1 GPS 안테나의 배치

GPS 수신기는 유도조종과 관련된 서브시스템이 장착되는 위성 발사체의 상단에 장착 된다. 이 위치에는 GPS 수신기 외에 지상수신장비와 같은 많은 전자장비들도 같이 설치되므로 이러한 장비의 전자 신호로 인해 상대적으로 약한 GPS 위성 신호가 교란되지 않도록 주의하여야 한다. GPS 안테나는 수신기와의 거리가 긴 경우에 Lever Arm 효과에 의한 오차가 발생하므로 가능한 한 GPS 수신기와 가까운 거리에 장착하여야 한다. 따라서 GPS 수신기가 설치되는 단의 기체표면에 장착되는 것이 제일 바람직하다. 그러나 GPS 안테나가 위성 발사체의 상단에 설치될 경우에는 비행중 공력가열에 의하여 안테나가 장착되는 표면 온도가 안테나의 균열을 빠르게 빠릴 수도 있다. 이러한 경우에는 발사체의 비행중 열해석에 의한 결과를 고려하여 안테나의 장착위치를 수정해야 한다. GPS 안테나가 수신기와 멀리 떨어져 설치되는 경우에는 안테나의 위치 변화에 의해 발생되는 항법오차의 보상 알고리즘을 추가로 개발하여야 한다.

위성 발사체는 일반적으로 긴 윤동형이므로 위성 발사체에 설치되는 안테나의 패턴을 구 형태로 만들기 위해서는 2개 이상의 안테나를 사용하여야 한다. 10°의 양각(Elevation Angle)을 갖는 2개의 안테나를 사용하는 경우에는 약 20°의 비수신 지역이 발생하게 되며, 양각이 0° 일지라도 0° 부근의 이득이 작거나게 된다. 또한 위성 발사체의 직경이 커질수록 안테나의 지향성(Directivity)이 높아지기 때문에 수신 감도가 작아져 GPS의 성능이 떨어지게 된다. 따라서 위성 발사체 표면에 장착되어 사용될 안테나는 비행 안정화를 위한 회전운동과 비행체의 자세 변화에도 많은 수의 가지위성 신호를 잘 수신하기 위해서는 3개 이상을 사용해야 한다. 일본 H-IIA 발사체에서 사용된 GPS도 3개의 안테나를 사용하여 구현되었다.(1)

위성 발사체에 2개 이상의 안테나를 설치한 경우에는 각 안테나마다 발사체의 비행체적과 자세에 따라 신호를 받을 수 있는 위치가 달라지게 된다. 예를 들어 3개의 GPS 안테나를 설치한 경우에는 발사체가 수평으로 비행할 때에 1개 또는 2개의 안테나가 기체에 가려져 위성 신호를 받지 못하게 되며, 이러한 경우에는 나머지 안테나면으로 충분한 가시위성을 확보해야 한다. 따라서 GPS 안테나를 배치할 때 이러한 점들을 충분히 고려하여야 한다. 가시위성을 확보하는 문제와 더불어 위성 발사체에 안테나를 배치할 때에는 비행중 발사체의 공력가열에 의한 발생되는 고온(High Temperature)도 함께 고려하여야 한다. 외부 발사체를 참조하면 발사체의 전두부인 노즈(Nose) 부위는 발사체의 속도에 따라 약 15000°C 이상의 고온으로 상승하며, 노즈 아래 부분이라 하더라도 300°C 이상으로 상승할 것이 예상된다. 따라서 기체 표면에 부착되어야 하는 GPS 안테나는 이러한 고온에서도 잘 동작하도록 설계되어야 한다. 기체 표면에 장착되는 GPS 안테나의 기본적인 형상은 그림 1과 같다. 일반적으로 8개의 볼트에 의하여 기체에 부착되며, 원통형의 기체에 장착되어야 하기 때문에 안테나의 표면은 약간 늘근 형태를 가지게 된다. 안테나 부분을 지지하고 있는 늘근 형태의 표면
그림 2의 (b)와 같이 GPS 안테나를 기체 표면보다 낮게 설치하면 공력가열로 인한 영향을 적게 받아 안테나가 좀 더 낮은 온도에서 동작할 수 있고, 안테나의 표면이 기체의 곡률과 일치하지 않아도 되는 장점이 있다. 그러나 기체에 의해 안테나의 영향을 받게 되므로 GPS 안테나를 설치할 때에는 이를 고려하여야 하므로 설치 자체가 매우 어렵게 된다.

안테나가 공력가열로 인한 고온에서도 잘 동작할 수 있다면, GPS 안테나를 기체 표면과 일치시켜 부착하는 것이 위성의 가시성 확보에 더욱 유리하기 때문에 1번째 방법이 좋은 방법이라고 생각할 수 있으나, 비행 중 기체의 열에서 결과가 GPS 안테나의 동작 온도를 초과한다면, 2번째 방법을 고려해야 할 것으로 생각된다.

2.2 GPS 수신기의 운용

GPS 안테나는 위성 발사체의 탑재시스템이 장착되는 위치에 배치되며, 3개의 안테나를 사용하는 경우에는 그림 3과 같이 수신기의 운용 방법에 따라 2가지 형태를 고려해

그림 3. GPS 안테나의 배치와 수신기 운용
볼 수 있다. 그림 3의 (a) 방법은 3 개의 안테
나로부터 들어오는 GPS 위성 신호를 1 개의
전력 통합기(Power Combiner)를 사용하여
GPS 수신기로 전달하는 방식이고, (b) 방법
은 3 개의 안테나로부터 들어오는 GPS 위성
신호를 3 개의 고주파 수신단을 가진 GPS 수
신기에서 처리하는 방식이다. 이들 방법은 모
두 1 개의 수신기를 사용하는 방식으로 실제
로 발사체에 탑재될 때에는 신뢰성을 고려하
여 2 개 이상의 수신기를 사용하여야 한다.

III. 안테나의 개수와 발사체의 회전에
따른 가시성 분석 실험

발사체의 자세와 비행 궤적이 변할 때 설
치된 GPS 안테나의 개수에 따른 가시성
분석은 매우 중요한 연구이다. 이러한 연구는
컴퓨터를 이용한 모의실험을 통하여 수행할
수도 있으나 모의실험에 의한 방법은 발사체
의 회전을 고려할 수 없으며, 설치된 안테나
끼리 서로 주고받는 영향을 살펴 볼 수 없다
는 단점이 있다. 이러한 사항들을 고려하여
본 연구에서는 실제 지상에서 위성 발사체의
모형을 제작하여 안테나의 개수와 발사체의
회전에 따른 가시성을 실험을 통하여 분석하
여 보았다.

3.1 실험 환경

수신되는 안테나의 위치와 개수에 따른
GPS 위성의 가시성을 분석하기 위하여 안테
나를 설치할 수 있는 침구를 제작하여 실험
에 설치하고, 위성 신호를 직접 받아 분석하
였다. 안테나의 침구는 발사체의 반경이 약
1.5 m 라고 가정하고 제작되었다. 발사체에
120° 간격으로 설치된 3 개의 안테나는 발사
체가 비행하는 동안 발사체의 비행 자세나
궤적에 따라 위성 신호를 수신하는 안테나가
달라지게 된다. 이러한 경우에 위성의 가시성
이 어떻게 되는지를 알아보기 위해 안테나의
개수를 바꾸어가면서 실험하였으며 2 개 이
상의 안테나를 사용할 때에는 위성 신호를
GPS 수신기로 보내기 위하여 전력통합기를
이용하였다. 전체적인 위성 신호의 흐름은 그
림 4와 같다.

발사체의 회전에 의한 위치의 가시성 분석은
실내에 설치된 모션테이블(Motion Table)에

```latex
\text{그림 4. 안테나의 개수에 따른 가시성 실험의 신호 흐름 (실외)}
```

```latex
\text{그림 5. 발사체의 회전에 따른 가시성 실험의 신호 흐름 (실내)}
```

```latex
\text{그림 6. Sensor Systems 사의 GPS 안테나 (S67–1575–252) }
```
表 1. Sensor Systems의 GPS 안테나 (S67-1575-252) 성능

<table>
<thead>
<tr>
<th>ELECTRICAL</th>
<th>1575.42 MHz (L1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2.0 : 1</td>
</tr>
<tr>
<td>VSWR</td>
<td>RHCP</td>
</tr>
<tr>
<td>Polarization</td>
<td>50 Ω</td>
</tr>
<tr>
<td>Impedance</td>
<td>3 dBic @ Zenith</td>
</tr>
<tr>
<td>Antenna Gain(Typ)</td>
<td>-1.0 dBic 0° ≤ θ ≤ 75°</td>
</tr>
<tr>
<td>Gain Coverage(min)</td>
<td>-2.5 dBic 75° ≤ θ ≤ 80°</td>
</tr>
<tr>
<td>Gain(preampl)</td>
<td>-4.5 dBic 80° ≤ θ ≤ 85°</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>-7.5 dBic θ = 90° @ Horizon</td>
</tr>
<tr>
<td>Power Handling</td>
<td>26.0 dB</td>
</tr>
<tr>
<td>Voltage</td>
<td>3.0 dB</td>
</tr>
<tr>
<td>Current</td>
<td>1 Watt</td>
</tr>
<tr>
<td>Lightning Protection</td>
<td>+4 to 24 VDC</td>
</tr>
<tr>
<td></td>
<td>65 mA</td>
</tr>
<tr>
<td></td>
<td>DC Grounded</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MECHANICAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>8 oz.</td>
</tr>
<tr>
<td>Width</td>
<td>4.50 in.</td>
</tr>
<tr>
<td>Length</td>
<td>4.50 in.</td>
</tr>
<tr>
<td>Material</td>
<td>6061-T6 Aluminum / Teflon Glass</td>
</tr>
<tr>
<td>Finish</td>
<td>Iridite per MIL-C-5541</td>
</tr>
<tr>
<td>Connector</td>
<td>SMA (Radiused Right Angle)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENVIRONMENTAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-80 °F to +203 °F</td>
</tr>
<tr>
<td>Vibration</td>
<td>10 g's</td>
</tr>
<tr>
<td>Altitude</td>
<td>77,000</td>
</tr>
</tbody>
</table>

안테나 치구를 장착하여 발사체를 모사하였으며, 그 끝에 안테나를 장착하여 실험하였다. GPS 안테나의 위성 신호를 GPS Networking 사의 Re-Radiating Kit를 사용하여 발사체 모형에 설치된 3개의 안테나로 송신하였으며, 각 각의 안테나에서 들어온 위성 신호를 전력통합기를 사용하여 GPS 수신기로 전달하였다. 전치적인 위성 신호의 흐름은 그림 5과 같다.

3.2 안테나의 개수에 따른 가시성 분석 실험

안테나의 개수에 따른 가시성 분석 실험에서는 위성 신호를 수신하는 안테나의 개수와 안테나와 지표면이 이루는 각에 따라 표 2와 같은 4 가지 경우를 고려하였다. 각 각의 경우를 상세히 설명하면 다음과 같다.

<table>
<thead>
<tr>
<th>발사체의 비행각</th>
<th>사용한 안테나의 개수</th>
<th>안테나와 지표면이 이루는 각</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 수평비행</td>
<td>1</td>
<td>90°</td>
</tr>
<tr>
<td>(2) 수평비행</td>
<td>2</td>
<td>30°</td>
</tr>
<tr>
<td>(3) 수평비행</td>
<td>2</td>
<td>60°</td>
</tr>
<tr>
<td>(4) 수직비행</td>
<td>3</td>
<td>0°</td>
</tr>
</tbody>
</table>

1) 1개의 안테나가 위성 신호를 수신할 수 있는 수평비행 (안테나와 지표면과의 각 : 90°) 2개의 안테나는 기체에 가려져 위성 신호를 볼 수 없다고, 1개의 안테나만이 위성 신호를 받는 경우이다. 신호를 받는 1개의 안테나가 지표면과 90°의 각을 이루고 있어 지상에서 GPS를 사용하는 경우와 유사하다.

2) 2개의 안테나가 위성 신호를 수신할 수 있는 수평비행 (안테나와 지표면과의 각 : 30°) 1개의 안테나는 기체에 가려져 위성 신호를 볼 수 없다고, 2개의 안테나가 위성 신호를 받는 경우이다. 신호를 받는 2개의 안테나가 지표면과 각 각 30°의 각을 이루고 있어 90°
그림 7. 안테나 개수에 따른 기시성 분석 실험 장치

그림 8. 안테나의 개수에 따른 기시위성의 개수
3개의 안테나가 위치 신호를 수신할 수 있는 수평비행 (안테나와 지표면과의 각: 60°) 경우 ②와 마찬가지로 1개의 안테나가 기체에 가려져 위치 신호를 받지 못하고, 2개의 안테나가 위치 신호를 받는 경우이다. 그러나 신호를 받는 2개에서 1개의 안테나는 지표면과 60°를 이루고, 다른 하나는 0°를 이루므로 신호의 세기가 다른 두 신호가 안테나로부터 들어오게 된다.

④ 3개의 안테나가 위치 신호를 수신할 수 있는 수직비행 (안테나와 지표면과의 각: 0°) 발사체가 수직비행을 하는 경우에는 3개의 안테나가 위치 신호를 모두 수신하게 되나, 지표면에 의한 다중경로(Multipath) 오차의 영향이 가장 크게 나타난다.

①~④의 실험 모습이 그림 7에 나타나 있다. 발사체의 발사 초기에는 3개의 안테나가 지표면과 0°를 이루면서 위치 신호를 수신하는 ④의 경우가 대부분이나, 그 이후에는 발사체가 궤적을 따라 비행하면서 자세가 가속 바뀌기 때문에 4가지 경우가 배손간 바뀌면서 나타난다. 지상에서의 실험은 발사체가 궤적과 자세에 따라 배손간 안테나가 바뀌면서 위성을 수신하는 상황을 모두 모사하기가 어렵기 때문에 각 각의 경우를 나누어서 실험하였으며, 안테나가 바뀌는 순간의 영향은 발사체의 회전을 고려한 실험에서 분석되어야 할 것이다. 고려된 각 각의 경우에 대한 가시우의 개수가 그림 8에 주어져 있다. 설치된 안테나의 개수와 시간에 따라 최소 5개에서 최대 8개까지의 위치 신호가 수신될 수 있다. 특히 그림 8의 4번 그래프는 발사체가 발사대에 수적으로 대기하고 있더라도 충분한 가시성을 확보할 수 있음을 보여준다. 따라서 발사체의 표면에 120°의 간격으로 3개의 안테나를 배치한 구성은 발사체의 자세가 바뀌어 수신되는 안테나의 개수가 달라지더라도 가시성을 확보하는 데에는 크게 문제가 없음을 알 수 있다.

3.3 발사체의 회전에 따른 가시성 분석 실험
발사체의 회전에 따른 가시성을 분석하기 위한 실험장치가 그림 9에 나타나 있다. 안테나 치구를 장착한 모션테이블을 회전시켜 발사체의 회전에 따른 영향을 실험하였으며, 모션테이블이 회전하더라도 3개의 안테나가 충분한 가시성 확보할 수 있는 것으로 확인되었다. 그러나 실험이 실험이 이루어졌기 때문에 별과 천장 및 바닥에 의한 다중경로 오차의 영향으로 발사체에 가려 위치신호를 받지 못하는 안테나도 위치 신호를 수신하는 현상이 발생하였다. 따라서 실제로 안테나가 서로 교차되면서 위치 신호를 짤레로 수신하려는지 알기 위해서는 다중경로 오차의 영향이 적은 실험에서 실험이 수행되어야 하며, 앞으로 실험에 회전 치구를 설치하고 발사체의 회전을 고려한 가시성 분석 실험을 보완하여 수행할 예정이다. 다른 문제점으로는 모션테이블을 0.1 Hz로 아주 느리게 회전시키려고 실험에 사용한 GPS 수신기의 추적율과가 되지 않기, 속도 및 시각에 대한 해를 개선해 내지 못하는 문제가 생겼다. 그러므로 위치 발사체에 GPS를 사용하기 위해서는 회전과 같은 비행환경에서도 위치 신호에 대한 추적이 계속 이루어질 수 있는 신기술이 개발되어야 할 것으로 생각된다.

VI. 결론
본 연구에서는 위치 발사체의 위치 GPS 안테나 구성에 대한 내용에 대하여 살펴보았다. 3개의 안테나를 기체의 표면에 120°의 간격으로 설치할 경우 발사체의 위치나 자세에 상관없이 충분한 개수의 가시성이 확보됨을 알 수 있었다. 그러나 정확한 가시성 분석은 발사체의 발사 시각, 발사 장소, 비행 시간, 비행 궤적 및 자세에 관련이
있으므로 실제 위성 발사체의 이러한 데이터들이 확정된 후 좀 더 정밀한 분석을 통하여 되도록 많은 수의 가시위성을 확보할 수 있을 때 위성 발사체의 발사가 이루어지어야 할 것으로 생각된다. 발사체의 확정에 따른 가시성 분석 실험을 통하여 3 개의 안테나가 충분한 가시위성을 확보할 수 있으으며, 확정 환경에서도 추적 루프가 개지지 않고 안정적으로 동작함을 확인할 수 있었다. 그러나 이러한 실험이 실내에서 이루어진 결과 다중경로 오차의 영향이 나타났으므로, 다중경로 오차가 적은 실외에서 확정에 대한 영향을 고려한 실험이 이루어지면 좀 더 정확한 분석을 기대할 수 있을 것으로 생각된다.

참고문헌