A Study on the Weight Tare of an Internal Balance
Including Translation of the Initial Loads
Se-Yoon Oh* and Seung-Ki Ahn*

ABSTRACT
In this paper, the weight tare calculation method including translation of initial loads is
proposed to remove the internal balance component readings due to model weight. If the
balance calibration equations are applied directly to the wind-on data without taking
account these initial loads, then incorrect data will be obtained for all wind-on data
calculations. The calculated model weights were compared with the actual model weights to
verify the reliability of the proposed calculation technique. Also, discussions of the effects of
the initial loads are given.

초 록
본 논문에서는 내장형 밸런스에 가해지는 모형중량성분의 보상을 위해 초기하중의 전이
를 고려한 weight tare 계산방안을 제시하였다. 만약, 이러한 초기하중의 영향을 고려하지
않고 공력과중 데이터에 밸런스 교정관계식을 그대로 적용한다면 공력과중 전체에 걸쳐서
오차가 발생하게 된다. 본 계산방안의 신뢰성 검증을 위해 계산중량과 실측중량간의 비교
평가와 초기하중의 영향에 대한 평가를 수행하였다.

Key Words : Internal Balance(내장형 밸런스), Initial Loads(초기하중), Correction(보정),
Interaction(상호작용), Calibration Origin(교정원점), Misalignment(비정렬)

I. 서 론
통통실험에서는 모형에 작용하는 다양한 상태
의 공력하중(air loads)을 확득하기 위해 여러 가
지 형태로 모형의 자세(attitude)를 변화시켜가되
며, 이러한 모형자세의 변화 중에는 중력방향으
로의 자세변화도 포함한다. 이 경우 하중측정장
비인 밸런스에는 공력하중과 더불어 모형무게로
인한 중력방향으로의 하중성분이 부가적으로 감
지된다. 이 같은 모형의 무게로 인한 밸런스의
하중성분은 실제로 측정하고자 하는 공력하중과

† 2003년 7월 10일 접수 ~ 2003년 8월 21일 심사완료
* 정회원, 국방과학연구소
연락처, E-mail : syoh@add.re.kr
대전시 유성구체국 사서함 35-3호

는 관계없는 성분으로 자료처리과정을 통해 반드시
제거시켜야한다. 모형의 무게가 밸런스에 미
치는 이러한 영향은 모형의 자세변화에 따라 각
각 달라지게 되며, 통통실험에서는 weight tare
계산을 통해 이 같은 중량성분의 영향을 보상시키기
게 된다. 부가적인 하중성분을 보상시키기 위
한 weight tare 계산과정은 모형중량(model
weight)에 대한 하중계산을 수반하며, 이러한 하
중계산과정은 밸런스의 비선형(nonlinear) 거동특
성으로 인한 초기하중(initial loads)의 영향과 밀
접하게 관계된다.
여기서 초기하중이란 공력하중이 가해지지 않
는 정적(static) 기준상태의 밸런스에 작용하는 모
형중량성분을 의미하며, 내장형 밸런스(internal
balance)의 경우에는 모형무게와 더불어 밸런스
고정용 핀(pin), 슬리브(sleeve) 등의 무게 및 벨린스의 부분적인 자체 무게를 포함하는 벨린스에 감지되는 충중량을 말한다. 이러한 초기하중은 내장형 벨린스의 비선형적인 분리(component)간 상호작용(interaction)과 연관하여 공력확장의 계산결과에 많은 영향을 줄 수 있다. 따라서, 벨린스 교정관계식을 적용하는 하중계산 처리과정에 모형중앙으로 인한 초기하중의 영향을 반영하는 것은 공력확장결과의 정확도 항상성을 위해서 매우 중요하다고 할 수 있다.

기존의 자료처리과정에서는 벨린스 분리간의 상호작용이 선형적이고 모형중앙이 매우 가벼운 경우로 가정하여 벨린스의 하중계산에 이러한 초기하중의 영향을 반영하지 않았다. 물론, 선형특성이 좋은 벨린스를 포통설명에 사용하고 모형의 무게가 매우 가벼운 경우로 국한해야만, 이러한 전체조건과 가정이 어느 정도 유효하게되며 이에 따른 초기하중의 영향도 상대적으로 작게 나타날 것이다. 따라서, 이러한 기존의 자료처리방식은 모형의 무게 및 사용 벨린스의 특성에 따라 그 적용이 상당히 제한적일 수밖에 없다.

이에 본 연구에서는 이러한 초기하중의 영향을 고려한 내장형 벨린스의 weight tare에 대한 고찰을 통해 기존 자료처리방식으로 인해 발생하였던 초기하중의 영향을 평가하고자 하였으며, 연구결과의 유효성 검증을 위해 포통설명모형의 계산중앙 및 실질중량과의 비교를 수행함으로써 본 계산방안의 타당성을 입증하고자 하였다. 아울러 모형자세변화에 따른 벨린스 분리간의 중량간결과의 상호비교를 통해, 내장형 벨린스와 모형간에 존재하는 비정렬(misalignment)에 관한 고찰도 수행하였다.

II. 초기하중과 Weight Tare

2.1 벨린스 분리간의 상호작용

일반적으로 사용되는 6분력 내장형 벨린스에는 3개의 힘 측정요소와 3개의 모멘트 측정요소가 존재한다. 그러나, 이러한 다단계 성분을 갖는 내장형 벨린스는 측정하고자 하는 특정성분만을 합병하게 분리시켜 측정할 수 없다는 단점을 갖고 있다. 이러한 측정요소간의 연관성의 벨린스 분리간의 상호작용이라 말하며, 이러한 상호작용을 일으키는 요인은 다음과 같이 크게 두 가지로 분류할 수 있다. 첫번째 요인으로는 내장형 벨린스 구성품들 구성품 조립체간의 비정렬 및 제작상의 오차를 들 수 있다. 두번째 요인은 벨린스 각 구성품들의 탄성변형으로부터 기인한다. 여기서 비정렬로 인한 오차는 벨린스 교정관계식(calibration equation)에서의 1차항 즉 선형적인 변화특성을 가지며, 상대적으로 탄성변형으로 인한 오차는 2차항 즉, 비선형적인 변화특성을 갖는다.

Fig. 1. Schematic of axial load sensor(3)

저의 축력(axial force)을 측정하기 위한 하중측정센서인 단일분력 벨린스를 표시한 그림이다. 벨린스의 교정을 통해 작용하중인 수직력(N), 피칭운동(M) 및 축력(A)과 측정축에서 측정된 지시하중(A)'과의 상관관계를 구할 수 있다. 만약 제작상의 오차 등을 이유로 측정축과 하중측축간의 여러 가지 각변위(angular displacements)가 생기는 경우를 가정한다면, 지시하중과 작용하중간의 관계는 식(1)과 같이 요약할 수 있다[3].

\[
A = A' - (d_1N + d_2N^2 + d_3NM)
\]

\[
= \frac{\theta_A}{k_A} - (d_1N + d_2N^2 + d_3NM)
\]

여기서 \(\theta_A/k_A\)는 감도함(sensitivity term)을 말하며 축력센서로부터 측정된 보정량(uncorrected) 출력으로서 혼히 원시자료(raw data)라고도 한다. 또한 \(d_1N\)은 벨린스의 제작과 조립상의 오차로 인한 항상 상호작용(interaction term)이며, 일반이란 나머지 항목들은 탄성변형으로 인한 비선형 상호작용항이다. 이러한 상호작용항들은 분리된 감도(sensitivity)와의 관계가 없으며 벨린스의 형상과 제료의 물성과 관계가 있다.

아울러 온도변화는 감도함과 상호작용항 모두에 의해 영향을 주지만, 본 연구에서는 이에 대한 영향을 다루지는 않았다.

이러한 2차항 또는 그 이상의 고차항에서의 분리가 비선형 상호작용의 존재는 원시자료의 처리과정에 있어서 작용하중과 더불어 본 연구에서 다루고자하는 초기하중이 서로 깊게 관계하고 있음을 시사한다.

2.2 초기하중 전이

ベルリンス 교정계수는 하중이 전혀 가해지지 않는
제로하중상태에서 교정과정을 통해 구겨지는 것이 일반적이다. 이에 따라 이러한 교정계수는 전체 작용하중에 대해 적용하게 된다. 그러나 풍동 실험에서는 풍속이 제로일 때 측정한 제로기준데이터(wind-off zero reference)에 대해 상대적인 하중측정이 이루어진다. 이러한 측정은 제로기준데이터의 확득과 동시에 이미 모형의 종량이 브랜스에 작용하고 있으므로 상대적인 증분하중(delta loads)에 해당한다. 이러한 증분하중의 처리과정에서는 2차항 상호작용계수가 비선형특성을 갖고 있는 점을 고려하여, 브랜스 2차항 상호작용에 대한 보정절차 과정에 초기하중의 영향을 감안해야한다.

 초기하중은 다음과 같은 경우에 있어서 밸런스의 하중계산에 그 물리량의 크기가 매우 중요하게 영향을 미칠 수 있다. 첫번째 경우에는 Reig, Kakutani, and Mokou에 의해 설명된 2차항 상호작용계수의 비선형에 대한 영향을 들 수 있다. 2차항 상호작용에 대한 보정절차 과정에 초기하중의 영향을 감안해야한다.

(a) Dual slope balance load output(7)

(b) Nonlinear balance load output(6)

Fig. 2. Initial load effect on balance

2.3 Weight Tare

Weight tare란 모형의 자체변화에 따른 중력방향에 대한 모형하중의 이동으로 인해 밸런스에 감지되는 부가적인 하중영향을 제거시키는 행위를 말한다. 즉, 움직이는 태양에서도 측정한 모형중량보정은 관련품질에서 수행한 공력하중으로부터 각각의 모형자세에 따라 공정시키다. 이 모형중량보정을 통해 하중하중의 증가나 감소 또는 이동에 따라 변하므로 하중변동의 발생 때마다 새로운 공제량을 측정하여 보상시켜야한다.
Weight tare는 모형의 자세변화로 인해 발생한다. 이 때, 동일한 Sect. 정적상태를 기준으로 측정한다면, 정적 상태의 tare라고도 한다. 벨런스에 가해지는 모형중량은 공력하중과 weight tare의 합산을 통해 구한다. 이에선 새로운 데이터에 고스란히 작용하고 있으므로 벨런스의 모든 헤투계산에 필요한 초기점을 바탕으로 한다.

모형중량에 따른 부가적인 하중분성을 공력으로부터 계산하기 위해서는 먼저 중력방향에 대해서 모형차체변화에 따른 부하중을 측정(이른바 "tare run")해야하며, 이 측정결과로부터 모형중량과 모형의 무게중심(center of gravity)의 위치를 구해야한다. 이론적으로는 단지 한 차체각만이 모형중량과 무게중심을 구할 수 있지만, 실험오차를 줄이기 위해 여러 차체 모형차체에 대한 정적하중을 수시 측정하는 것이 일반적이다.

III. Weight Tare의 계산

3.1 기준좌표계 및 조건

본 연구를 위한 자료처리과정에는 오른손법칙을 적용하는 직각좌표계를 기준시스템으로 사용하였으며, 오일러 변환행렬(orthogonal Eulerian transformation matrix)을 순차적으로 적용하여 벨런스와 모형 차체를 산출하였다[8]. 따라서 기준좌표축의 양의 방향은 각각 X축이 전방으로 향할 때, Y축은 전방을 바라보고 오른쪽을 향할 때, Z축은 아래 방향으로 향한다.

본 논문에서는 계산식 표현의 용이성을 위해 행과 모멘트 성분은 F와 M으로 표기하고 X-Y-Z 방향의 표사를 위해 첨자 1-2-3을 사용하였으며, 모형 지지시스템의 각종 처짐(deflection) 등이 없는 단순한 경우로 가정하였다. 풍동실험에 사용된 6축성 내장형 벨런스의 교정계수는 6×6의 1차 교정항과 6×21의 2차 교정항으로 구성된 일반적으로 가장 많이 활용되고 있는 6×27 형태의 행렬을 사용하였으며, 이들 교정계수는 벨런스가 제로하중(zero load output) 상태에 있을 때 교정항으로 기준하여 산출된 계수이다.

3.2 Weight Tare 요소의 계산

3.2.1 모형중량의 계산

벨런스와 모형의 자세계산에 사용된 롤(roll), 피치(pitch) 및 요치(yaw) 방향에 대한 각도 변환 행렬은 식(2)와 같다.

\[
\begin{bmatrix}
\phi \\
\theta \\
\psi
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{bmatrix}
\]

\[
\begin{bmatrix}
\phi \\
\theta \\
\psi
\end{bmatrix}
= \begin{bmatrix}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{bmatrix}
\]

\[
\begin{bmatrix}
\phi \\
\theta \\
\psi
\end{bmatrix}
= \begin{bmatrix}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

지구중력의 관점에서 볼 때는 모형중량(W)은 모형중량의 수평분력성분이 존재하지 않고 오직 중력방향으로의 수직분력성분만이 존재한다. 따라서, 각각의 모형차체에서 벨런스에 작용하는 항은 정적 weight tare 데이터에 대해 식(3)과 같이 나타낼 수 있다.

\[
\begin{bmatrix}
F_{x,tare} \\
F_{y,tare} \\
F_{z,tare}
\end{bmatrix}
= \begin{bmatrix}
\phi \\
\theta \\
\psi
\end{bmatrix}
\begin{bmatrix}
\phi_{,roll} & \theta_{,pitch} & \psi_{,yaw}
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
W
\end{bmatrix}
\]

여기서 \[\phi_{,roll} \theta_{,pitch} \psi_{,yaw}\]은 정적상태의 중력방향에 대한 벨런스 차체를 나타내는 변환행렬이며, 첨자 i는 변환행렬 계산에 사용된 각각 풍동의 피치섹터(pitch sector)나 요치섹터(yaw sector) 등에서 획득된 지지각(indicated angle)임을 의미한다. 이러한 변환행렬은 풍동 고유의 모형 지지부 형상 및 기구학적 작동시스템에 따라 연산 순서와 결과가 달라지게 된다. 또한, 벨런스에 작용하는 재료기준 차체에서의 힘은 식(4)와 같다.

\[
\begin{bmatrix}
F_{x,0} \\
F_{y,0} \\
F_{z,0}
\end{bmatrix}
= \begin{bmatrix}
\phi_{,roll} & \theta_{,pitch} & \psi_{,yaw}
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
W
\end{bmatrix}
\]

그리므로, 재료기준 자세각을 영점으로 기준한 벨런스의 지시하중(indicated loads)은 식(5)과 같이 나타낼 수 있다.

\[
\begin{bmatrix}
\phi_{,roll} \\
\theta_{,pitch} \\
\psi_{,yaw}
\end{bmatrix}
= \begin{bmatrix}
F_{x,tare} - F_{x,0} \\
F_{y,tare} - F_{y,0} \\
F_{z,tare} - F_{z,0}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\phi_{,roll} & \theta_{,pitch} & \psi_{,yaw}
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
W
\end{bmatrix}
\]

\[
\begin{bmatrix}
\phi_{,roll} & \theta_{,pitch} & \psi_{,yaw}
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
W
\end{bmatrix}
\]

먼저 수식을 간략하게 표현하기 위해 식(6)과
같은 행렬 \([L]\)을 정의한다.

\[
\begin{bmatrix}
L_1 \\
L_2 \\
L_3
\end{bmatrix} = \begin{bmatrix}
\phi_r \\
\theta_p \\
\psi_y
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]

\(6\)

\[
- \begin{bmatrix}
\phi_r \\
\theta_p \\
\psi_y
\end{bmatrix} \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]

결과적으로 식\((6)\)을 사용하여 식\((5)\)을 식\((7)\)과 같은 간단한 형태의 식으로 표시할 수 있다.

\[
\begin{bmatrix}
F_1 \\
F_2 \\
F_3
\end{bmatrix} = W \begin{bmatrix}
L_1 \\
L_2 \\
L_3
\end{bmatrix}
\]

\(7\)

여기서 \(N\)개의 weight tare 데이터에 대해 최소자승법(least squares technique)과 같은 선형화 귀분석을 수행한다면 다음의 식\((8)\)과 같이 모형 중량을 구할 수 있다\([1,2,4]\).

\[
W = \frac{\sum_{j=1}^{n} \sum_{i=1}^{M} F_{ij} L_{ij}}{\sum_{j=1}^{n} \sum_{i=1}^{M} L_{ij}^2}
\]

\(8\)

3.2.2 모형 무게중심의 계산

자세변화에 따른 밸런스의 모멘트(indicated moments)는 밸런스의 지시량중과 X-Y-Z 방향으로의 무게중심 위치에 따라 변한다. 모형의 무게 중심으로부터 밸런스의 모멘트중심까지의 거리를 각각 \(X, Y\) 및 \(Z\)라 할 때, 식\((7)\)의 결과와 다음의 식\((9)\)과 같이 정의한 모형중량과 무게중심까지의 거리의 곱인 \(C\)를 이용하여 모형자세변화에 따른 밸런스의 모멘트를 표현하면 식\((10)\)과 같다.

\[
C_1 = W \bar{X}
\]

\[
C_2 = W \bar{Y}
\]

\[
C_3 = W \bar{Z}
\]

\(9\)

\[
M_1 = -F_1 \bar{Z} + F_3 \bar{Y} = C_2 L_3 - C_3 L_2
\]

\[
M_2 = F_1 \bar{Z} - F_3 \bar{X} = -C_1 L_3 + C_3 L_1
\]

\[
M_3 = -F_1 \bar{Y} + F_3 \bar{X} = C_1 L_2 - C_2 L_1
\]

\(10\)

식\((10)\)은 \(N\)개의 weight tare 데이터에 대해 \(C_1, C_2, C_3\)에 관한 귀분석을 통해 해를 얻을 수 있다. 행렬방법을 사용하여 이러한 해를 얻기 위해서는 먼저 식\((11)\)과 같은 일련의 행렬을 정의하면 편리하다. 여기서 행렬 \([M]\)과 \([A]\)는 각기 다른 \(N\)개의 weight tare로부터 추정된 모멘트와 자세각을 의미한다.

\[
\begin{bmatrix}
M_1 \\
M_2 \\
M_3
\end{bmatrix} = \begin{bmatrix}
M_{11} & M_{12} & \ldots & M_{1N} \\
M_{21} & M_{22} & \ldots & M_{2N} \\
M_{31} & M_{32} & \ldots & M_{3N}
\end{bmatrix}
\]

\[
A_1 = \begin{bmatrix}
0 & 0 & \ldots & 0 \\
L_{31} & L_{32} & \ldots & L_{3N} \\
-L_{21} & L_{22} & \ldots & -L_{2N}
\end{bmatrix}
\]

\(11\)

\[
A_2 = \begin{bmatrix}
-L_{31} & -L_{32} & \ldots & -L_{3N} \\
0 & 0 & \ldots & 0 \\
L_{11} & L_{12} & \ldots & L_{1N}
\end{bmatrix}
\]

\[
A_3 = \begin{bmatrix}
L_{21} & L_{22} & \ldots & L_{2N} \\
-L_{11} & -L_{12} & \ldots & -L_{1N} \\
0 & 0 & \ldots & 0
\end{bmatrix}
\]

따라서, \(N\)개의 데이터에 대해서 식\((10)\)은 다음의 식\((12)\)와 같이 표시할 수 있다.

\[
\begin{bmatrix}
M_1 \\
M_2 \\
M_3
\end{bmatrix} = [C] \begin{bmatrix}
A_1 \\
A_2 \\
A_3
\end{bmatrix}
\]

\(12\)

식\((12)\)를 행렬 \([C]\)에 대해 풀게 되면 다음의 식\((13)\)을 얻을 수 있다.

\[
[C] = ([M_1] [A_1]^T + [M_2] [A_2]^T + [M_3] [A_3]^T)^{-1}
\]

\(13\)

따라서, 식\((13)\)에서 구한 \([C]\)와 식\((9)\)의 관계를 이용하여 계산하면 \(C_1, C_2, C_3\)의 구할 수 있게 된다.

\[
\bar{X} = \frac{C_1}{W}
\]

\[
\bar{Y} = \frac{C_2}{W}
\]

\[
\bar{Z} = \frac{C_3}{W}
\]

\(14\)

3.3 Weight Tare의 보정

\(N\)개의 weight tare 데이터를 사용한 일련의 계산을 통해 모형중량 및 무게중심을 알게 되었으므로, 식\((15)\)에서와 같이 모형중량 벡터를 행렬 변환하여 헨설분에 대한 자세 보정량을 구하고 식\((16)\)에서와 같이 모멘트선분에 대한 자세 보정
방정식을 구할 수 있다.

\[
\begin{align*}
\Delta F^{1,\text{tare}} & = \begin{bmatrix} \phi_{1,0} \end{bmatrix}_{\text{roll}} \begin{bmatrix} \theta_{1,0} \end{bmatrix}_{\text{pitch}} \begin{bmatrix} \phi_{1,0} \end{bmatrix}_{\text{yaw}} \\
\Delta F^{2,\text{tare}} & = \begin{bmatrix} \phi_{2,0} \end{bmatrix}_{\text{roll}} \begin{bmatrix} \theta_{2,0} \end{bmatrix}_{\text{pitch}} \begin{bmatrix} \phi_{2,0} \end{bmatrix}_{\text{yaw}} \\
\Delta F^{3,\text{tare}} & = \begin{bmatrix} \phi_{3,0} \end{bmatrix}_{\text{roll}} \begin{bmatrix} \theta_{3,0} \end{bmatrix}_{\text{pitch}} \begin{bmatrix} \phi_{3,0} \end{bmatrix}_{\text{yaw}} \\
\end{align*}
\]

\[
\Delta M^{1,\text{tare}} = -\Delta F^{2,\text{tare}} \begin{bmatrix} Z \end{bmatrix} + \Delta F^{3,\text{tare}} \begin{bmatrix} Y \end{bmatrix}
\]

\[
\Delta M^{2,\text{tare}} = -\Delta F^{1,\text{tare}} \begin{bmatrix} Z \end{bmatrix} - \Delta F^{3,\text{tare}} \begin{bmatrix} X \end{bmatrix}
\]

\[
\Delta M^{3,\text{tare}} = -\Delta F^{1,\text{tare}} \begin{bmatrix} Y \end{bmatrix} + \Delta F^{2,\text{tare}} \begin{bmatrix} X \end{bmatrix}
\]

따라서, 이 결과를 이용하게 되면 공력향상 테 이터에서 모형의 자세변화에 따른 영향을 제거한 식(17)의 보정된(corrected) 벨런스 하중을 최종적으로 구할 수 있게 된다.

\[
\begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ M_1 \\ M_2 \\ M_3 \end{bmatrix}_{\text{corrected}} = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ M_1 \\ M_2 \\ M_3 \end{bmatrix}_{\text{uncorrected}} - \begin{bmatrix} \Delta F^{1} \\ \Delta F^{2} \\ \Delta F^{3} \\ \Delta M^{1} \\ \Delta M^{2} \\ \Delta M^{3} \end{bmatrix}_{\text{tare}}
\]

3.4 계산결과의 검정

모형중앙과 무게중심 등의 weight tare 요소들은 제로기준 하중상태의 추정 초기하중을 근간으로 계산된 값이다. 이렇게 계산된 tare 요소들은 새로운 초기하중의 계산에 사용된다. 만약 새로 계산된 초기하중과 기존의 초기하중간의 중량 차이가 미리 규정된 오차범위 안에 들어간다면 weight tare 계산결과를 수용한다고 판단한다. 또한, 새로운 초기하중이 기존의 중량결과와 큰 차이를 보이면 기존 초기하중 값을 새로운 초기하중 값으로 교체하고, 이를 사용한 초기하중 전 이를 고려한 벨런스 계정하중을 구하는 계산을 반복적으로 수행한다. 이러한 반복계산은 초기하중이 수렴할 때까지 최대 5회 동안 수행한다. 일반적으로 이러한 반복계산은 식(18)와 같은 수렴 조건을 적용할 때 약 2 3회 안에 수렴한다.

\[
\Delta \text{Initial Load}_{\text{new-odl}} \leq \frac{\text{Balance Accuracy}}{10}
\]

그러나, 초기하중에 대한 반복계산에 대해 식 (18)과 같은 수렴성 판단조건을 사용하더라도 이 수렴조건이 여러 모형자세로부터 구한 모형중앙 자체의 선형적합성까지 보장해주지는 못한다. 따라서, 최소자승법으로 구한 근사하중(W·L)과 측

![Fig. 3. Flow chart for weight tare calculation](image)

정하중(F_{\text{tare}})간의 표준오차를 이용하여 식(19)와 같은 모형중앙의 선형성에 관한 추가적인 검정방안이 필요하다. [1].

\[
\frac{\sum_{i=1}^{N} (F_{\text{tare}} - W \cdot L)^2}{N - 2} \leq 1
\]

이러한 weight tare 계산과정에 대한 전체흐름을 도시하면 Fig. 3과 같다.

IV. 계산결과 및 검토

4.1 모형중앙별 사례연구

계산된 모형중앙의 정확도는 정적상태에서 벨런스에 감지되는 모든 중량요소들에 대한 실측중량과의 비교를 통해 가능하다. 기존의 아웃소 평등모형들에 비해 상대적으로 매우 가벼운 모형과 무거운 모형에 관한 하중특성의 사례연구를 통해 본 연구에 사용된 weight tare 계산법의 유효성과 타당성을 입증하고자 하였으며, 이를 위해 경량모형(Model I)과 중량모형(Model II)의 2종 모형에 대한 weight tare 분석을 수행하였다. Table 1은

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight</th>
<th>Material Properties</th>
<th>Test Speed</th>
<th>Angle of Attack ((\alpha))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model I</td>
<td>28 lb</td>
<td>composite/aluminum</td>
<td>40 psf</td>
<td>-3° ~ 34°</td>
</tr>
<tr>
<td>Model II</td>
<td>309 lb</td>
<td>form block/st. steel</td>
<td>32 psf</td>
<td>-9° ~ 29°</td>
</tr>
</tbody>
</table>

Table 1. Characteristics of the test model.
사례연구에 사용된 2종 모형에 대한 모형특성과 풍동시험조건에 관한 내용을 기술하고 있으며, Fig. 4와 Fig. 5는 이들 두 모형들에 대한 형상을 보여주고 있다.

4.2 모형중량 예측결과

별도로 측정된 모형중량과 weight tare 분석을 통해 계산된 중량과의 비교결과가 Table 2에 나와 있다. 여기서 weight tare 계산으로 구한 모형중량은 순수 모형중량과 더불어 벨런스의 부분중량 등이 포함된 전체중량이다. 벨런스의 부분중량은 풍동시험에 사용되는 벨런스의 종류에 따라 달라지게 된다. 본 연구에 사용된 벨런스는 2종 실린더 구조로 되어있는 방식의 벨런스이므로, 벨런스 외부 실린더의 무게가 이러한 부분중량으로 가해지는 것으로 추정하였다.

경량 및 중량 모형의 비교결과로부터 계산중량과 실험중량의 결과가 차이를 주로 재현율 문제로 정확하지 않다고 한다. 이러한 중량차이는 풍동시험에 사용된 벨런스의 정격중량과 측정중량 차이에 설계에 별도 무시할 수 있는 정도의 오차로 간주할 수 있다.

<table>
<thead>
<tr>
<th>Table 2. Characteristics of the test model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated Weight</td>
</tr>
<tr>
<td>total (O+Q)</td>
</tr>
<tr>
<td>Model I</td>
</tr>
<tr>
<td>Model II</td>
</tr>
</tbody>
</table>

4.3 초기하중 전이의 효과

Table 3은 경량모형과 중량모형에 대한 초기하중 전이의 영향을 평가한 자료이다. 비교대상 벨런스의 분석은 물체(ϕ)이 01일 때에 자세각 변에 따른 영향을 받는 주요 성분요소인 측력(A)과 수직력(N)이다. 표시된 수치들은 초기하중의 영향을 고려할 때와 배제하였을 때의 벨런스 측에서 측정된 공력하중과 하중계수(F/qS)에 대한 최대차이를 나타낸다. 예상대로 초기하중의 영향이 상대적으로 큰 모형자세는 벨런스에 가장 크게 하중이 작용하는 최대 방향각(angle of attack) 영역에서 발생하였으며, 이보다 작은 방향각 영역에서는 초기하중의 영향이 상대적으로 작은 결과를 보였다.

앞서 언급한 바와 같이 초기하중의 영향이 모형의 중량과 벨런스에 가해지는 공력하중이 클수록 커진다는 것을 알 수 있으며, 이러한 차이는 수직력계수에서 경량모형의 경우 최대 10 count가, 중량모형의 경우에는 최대 50 count가 발생하였다. 이러한 분석결과에서 풍동시험에 일반적으로 적용되는 정밀도에 관한 요구수준[3,9]에 비추어 볼 때 초기하중 전이의 영향이 모형자세에 따라 상당히 크고, 자료처리 과정에서 이에 대한 보상이 반드시 반영되어야만 한다는 점을 알 수 있다. 또한, 실험에 사용되는 벨런스의 비식별 특성의 큰 경우에는 초기하중으로 인한 영향도 상대적으로 더욱 클 것으로 예상된다.

<table>
<thead>
<tr>
<th>Table 3. Effects of the initial load translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance Comp.</td>
</tr>
<tr>
<td>Model I @ 34°</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Model II @ -9°</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

4.4 분력성분의 변화와 비정렬

Fig. 6은 모형자세변화에 따른 벨런스 분력의
변화경향을 평가한 자료이다. 이러한 분석들은 제로기준대상을 원점으로 기존의 데이터이므로, 수직력(F_y)의 경우 수직력 방향으로 최대대중이 작용하는 모형의 위치가 (θ)이 0°일 때의 상대하중 (relative loads)은 0 lb이다. 또한, 모형자세가 변함에 따라 상대하중은 코사인($\cos \theta - 1$) 형태로 변한다는 것을 알 수 있으며, 측력 (F_z) 성분은 수직력에 비해 사인 ($-\sin \theta$) 형태로 큰 변화량이 보였다. 아울러, 이때의 측력 (F_z) 성분은 엔진의 물가 (ϕ)가 0°인 경우에 해당하여 모형중앙성분의 영향이 거의 없다는 것을 알 수 있다.

내장형 밸런스의 수직력 성분보다는 측력 성분의 적절성이 작은 경우가 일반적이므로, 공력 하중에 비해 상대적으로 작은 모형중앙성분이 밸런스에 작용하는 weight tare 계산에서는 적절해 줄이 작고, Fig. 6에서와 같이 자세변화에 따른 하중변화량이 상대적으로 큰 측력 성분의 센서가 보다 더 정확하게 설정해질 수 있어 있다. 따라서, 자세변화량을 통해 모형량을 산출하는 식(8)의 경우 세 종류의 밸런스 분석에 대해 일반적으로 중량계산을 수행하고 있는데, 이러한 세가지 분석에 측력성분 분산량의 비중이 모형중앙 계산결과에 지배적인 영향을 주고 있음을 알 수 있다.

한편, 식(8)에서 각 분석별로 나누어 모형중앙을 구하는 경우에는 측력센서와 수직력센서로부터 각각 구한 모형중앙 $W_{Axisial}$와 W_{Normal}간에 차이가 발생하기도 한다. 만약, 이 두 산출량간에 10% 이상의 차이가 발생한다면 이는 자세정부 또는 밸런스와 모형간의 장착에 있어서 갭이 있을음을 의미한다[5]. 모형자세는 자세측정센서를 통해 직접 측정할 수도 있고 공동 피치센서를 통해 간접적으로 산출할 수도 있는데, 이러한 객편성을 보다 모형자세의 측정방식에 따라 결정된다.

\[\sin \theta = \sin (\theta + \theta_m) \]
\[\cos \phi = \cos (\phi + \phi_m) \]

식(20)과 같이 θ 및 ϕ의 자세각에 θ_m과 ϕ_m 같은 비정렬 산출값을 도입하여 이러한 분석간의 모형중앙차이가 최소화되도록 반복계산을 수행한 다음, 모형의 자세변화에 따른 밸런스의 변화와 객관적인 미세한 변이로부터 오는 비정렬 특성을 산출할 수 있다. 이러한 비정렬각이 1° 이상으로 산출된다면 일반적으로 자세각 시스템이나 밸런스와 모형간의 기준각들이 정확하게 설정되어있지 않았다고 판단할 수 있다.

Fig. 6. Changes in balance component due to model weight (heavyweight model)

V. 결론

본 연구에서는 공력하중의 계산결과에 미치는 초기하중 전이의 영향을 검토하였으며, 이를 바탕으로 내장형 밸런스를 사용하는 풍동실험에 필요한 weight tare 계산법을 제시할 수 있었다. 또한, 계산된 결과들과 별도로 측정된 모형중앙 자료들 간의 비교를 통해 본 연구결과에 관한 유효성을 검증할 수 있으며, 다음과 같은 결론을 얻을 수 있었다.

1. 초기하중을 고려한 weight tare의 고찰을 통해 내장형 밸런스 분석간의 비정합적인 상호작용으로 인한 오차가 풍동실험 정밀도 요구수준 [3,9]에 비해 성분에 따라 최대 5주 10배 가량 발생할 수 있으며, 본 연구에서 제시한 방안을 통해 이러한 오차요인을 제거할 수 있었다.

2. 모형중앙과 초기하중에 대한 계산결과의 타당성 판단에 필요한 유효성 검정방안의 적용을 통해 밸런스 정밀도에 근거한 정량적인 수렴성 판단조건을 제시할 수 있었다.

3. 정량 및 중량 모형별 하중특성에 따른 영향 평가를 통해 본 weight tare 계산방안의 타당성을 검증할 수 있었으며, 이는 여기까지 형태의 내장형 밸런스를 사용하는 풍동실험분야와 5 분석 이하 소분석 밸런스의 자료처리과정에도 확장 적용할 수 있을 것으로 판단된다.

참고문헌

