DOI QR코드

DOI QR Code

Effects of Type of Oilseed and Level of Concentrate on Fermentation, Biohydrogenation of Fatty Acids and Conjugated Linoleic Acid Production in a Rumen-Simulated Continuous Culture System

지방급원 형태와 수준에 따른 연속배양장치 내 반추위 발효성상, 지방산의 수소첨가 현상 및 Conjugated Linoleic Acid 생산에 미치는 영향 연구

  • Choi, N.J. (Institute of Grassland and Environmental Research, Plas Gogerddan)
  • Published : 2003.08.30

Abstract

This experiment employed a rumen simulated continuous culture system to examine the possibility of improving the rumen bypass of polyunsaturated fatty acids (PUFA) by using a high proportion of concentrate in the feed, and compared soya and linseed in terms of conjugated linoleic acid (CLA) production. No effect of type of fat source was observed on ruminal fermentation. A high proportion of concentrate (80%) in the feed decreased (P<0.001) vessel pH but increased (P<0.01) ammonia nitrogen, total VFA, acetate, butyrate and valerate concentrations compared with a low proportion (40%). Fat sources (soya vs. linseed) and concentrate ratio in the feed did not affect digestibilities of organic matter (OM), total nitrogen, neutral detergent fiber (NDF) and acid detergent fiber (ADF). Soya increased the flows of trans C18:1, C18:2 n-6 and C18:3 n-3 compared with linseed. The difference in fat source alone did not affect the flow of CLA but this was increased when high levels of soya and linseed were associated with a high proportion of concentrate in the feed. There was no effect of fat source on biohydrogenation of C18:1 n-9 and C18:2 n-6, but biohydrogenation of C18:3 n-3 and total C18 PUFA was higher with the linseed than with the soya treatment. A high proportion of concentrate decreased biohydrogenation of C18:2 n-6, C18:3 n-3 and total C18 PUFA compared with a low proportion.

본 연구는 사료 내 농후사료의 비율을 높임으로서 불포화 지방산의 반추위 내 by-pass율의 향상 가능성을 조사하고, 아마종실과 전지대두 급여 시 CLA 생산을 상호 비교하기 위하여 연속배양장치를 이용하여 수행하였다. 지방 급원에 따른 발효 성상의 차이는 보이지 않았다. 한편 사료 내 농후사료 비율이 높은 (80%) 처리구는 농후사료 비율이 낮은 (40%) 처리구와 비교하여 pH는 감소하였으나, 암모니아, 총 휘발성 지방산, acetate, butyrate 및 valerate 농도가 증가되었다. 지방급원 (전지대두 vs 아마종실)과 사료 내 농후사료 비율은 organic matter (OM), total nitrogen, neutral detergent fiber (NDF) 및 acid detergent fiber (ADF)의 소화율에 영향을 끼치지 않았다. 반면에 전지대두는 아마종실과 비교하여 trans C18:1, C18:2 n-6 및 C18:3 n-3 유출율은 증가시켰다. 지방 급원에 의한 CLA flow는 영향을 받지 않았으나 사료 내 농후사료 비율이 높을 때와 전지대두와 아마종실의 함량이 높았을 때는 증가되었다. 수소 첨가현상은 C18:1 n-9 와 C18:2 n-6에서 지방 급원에 의하여 영향을 받지 않았으나, 아마종실 처리구에서는 C18:3 n-3 과 총 C18 불포화지방산의 수소 첨가현상이 전지대두 처리구와 비교하여 높은 비율로 발생했다. 한편 사료 내 농후사료 비율이 높을 때 처리구에서 C18:2 n-6, C18:3 n-3 및 총 C18 불포화 지방산의 수소 첨가현상은 농후사료 저 처리구와 비교하여 감소되었다.

Keywords

References

  1. Aldrich, C. G., Merchen, N. R., Drackley, J. K., Jr. Fahey, G. C. and Berger, L. L. 1997. The effects of chemical treatment of whole canola seed on intake, nutrient digestibilities, milk production, and milk fatty acids of Holstein cows. J. Anim. Sci. 75:512-521. https://doi.org/10.2527/1997.752512x
  2. Chalupa, W., Rickabaugh, B., Kronfeld, D. S. and Sklan, D. 1984. Rumen fermentation in vitro as influenced by long chain fatty acids. J. Dairy Sci. 67:1439-1444. https://doi.org/10.3168/jds.S0022-0302(84)81459-9
  3. Elizalde, J. C., Aldrich, C. G., LaCount, D. W., Drackley, J. K. and Merchen, N. R. 1999. Ruminal and total tract digestibilities in steers fed diets containing liquefied or prilled saturated fatty acids. J. Anim. Sci. 77:1930-1939. https://doi.org/10.2527/1999.7771930x
  4. Enjalbert, F., Nicot, M. C., Vernay, M., Moncoulon, R. and Griess, D. 1994. Effect of different forms of polyunsaturated fatty acids on duodenal and serum fatty acid profiles in sheep. Can. J. Anim. Sci. 74:595-600. https://doi.org/10.4141/cjas94-087
  5. Enser, M., Hallett, K., Hewett, B., Fursey, G. A. F. and Wood, J. D. 1996. Fatty acid content and composition of English beef, lamb and pork at retail. Meat Sci. 42:443-456. https://doi.org/10.1016/0309-1740(95)00037-2
  6. Enser, M., Scollan, N. D., Choi, N. J., Kurt, E., Hallett, K. and Wood, J. D. 1999. Effect of dietary lipid on the content of conjugated linoleic acid (CLA) in beef muscle. Anim. Sci. 69:143-146. https://doi.org/10.1017/S1357729800051171
  7. Fotouhi, N. and Jenkins, T. C. 1992. Resistance of fatty acyl amides to degradation and hydrogenation by ruminal microorganisms. J. Dairy Sci. 75:1527-1532. https://doi.org/10.3168/jds.S0022-0302(92)77909-0
  8. Galbraith, H. and Miller, T. B. 1973. Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids. J. Appl. Bact. 36:659-675. https://doi.org/10.1111/j.1365-2672.1973.tb04151.x
  9. Griinari, J. M., Dwyer, D. A., McGuire, M. A., Bauman, D. E., Palmquist, D. L and Nurmela, K. V. V. 1998. Trans-octadecenoic acids and milk fat depression in lactating dairy cows. J. Dairy Sci. 81:1251-1261. https://doi.org/10.3168/jds.S0022-0302(98)75686-3
  10. Harfoot, C. G. 1978. Lipid metabolism in the rumen. Prog. Lipid Res. 17:21-54. https://doi.org/10.1016/0079-6832(78)90004-6
  11. Harfoot, C. G and Hazlewood, G. P. 1988. Lipid metabolism in the rumen. In : The Rumen Microbial Ecosystem (ed. P. N. Hobson). London, New-York: Elsevier Applied Science. pp.285-322.
  12. Hussein, H. S., Merchen, N. R. and Fahey, G. C. 1996. Effects of chemical treatment of whole canola seed on digestion of long-chain fatty acids by steers fed high or low forage diets. J. Dairy Sci. 79:87-97. https://doi.org/10.3168/jds.S0022-0302(96)76338-5
  13. Ip, C., Singh, M., Thompson, H. J. and Scimeca, J. A. 1994. Conjugated linoleic acid suppresses mammary carcinogensis and proliferate activity of the mammary gland in the rat. Cancer Res. 54:1212-1215.
  14. Jahreis, G., Fritsche, J. and Steinhart, H. 1997. Conjugated linoleic acid in milk fat - high variation depending on production system. Nutr. Res. 17:1479-1484. https://doi.org/10.1016/S0271-5317(97)00138-3
  15. Jenkins, T. C and Palmquist, D. L. 1984. Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. J. Dairy Sci. 67:978-986. https://doi.org/10.3168/jds.S0022-0302(84)81396-X
  16. Jenkins, T. C. 1993. Lipid metabolism in the rumen. J. Dairy Sci. 76:3851-3863. https://doi.org/10.3168/jds.S0022-0302(93)77727-9
  17. Jiang, J., Bjoerck, L., Fonden, R. and Emanuelson, M. 1996. Occurrence of conjugated cis-9, trans-11 octadecadienoic acid in bovine milk: Effects of feed and dietary regimen. J. Dairy Sci. 79:435-445.
  18. Kalscheur, K. F., Teter, B. B., Piperova, L. S. and Erdman, R. A. 1997a. Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. J. Dairy Sci. 80:2104-2114. https://doi.org/10.3168/jds.S0022-0302(97)76156-3
  19. Kalscheur, K. F., Teter, B. B., Piperova, L. S. and Erdman, R. A. 1997b. Effect of fat source on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. J. Dairy Sci. 80:2115-2126. https://doi.org/10.3168/jds.S0022-0302(97)76157-5
  20. Klusmeyer, T. H. and Clark, J. H. 1991. Effects of dietary fat and protein on fatty acid flow to the duodenum and in milk produced by dairy cows. J. Dairy Sci. 74:3055-3067. https://doi.org/10.3168/jds.S0022-0302(91)78491-9
  21. Klusmeyer, T. H., Lynch, G. L., Clark, J. H. and Nelson, D. R. 1991. Effects of calcium salts of fatty acids and protein source on ruminal fermentation and nutrient flow to the duodenum of cows. J. Dairy Sci. 74:2206-2219. https://doi.org/10.3168/jds.S0022-0302(91)78394-X
  22. Lawes Agricultural Trust, 1990. GENSTAT V mark 2.2. Rothamsted Experimental Station, Harpenden, UK.
  23. Maczulak, A. E., Dehority, B. A. and Palmquist, D. L. 1981. Effects of long-chain fatty acids on growth of rumen bacteria. Appl. Environ. Microbiol. 42:856-862.
  24. McDougall, E. I. 1948. Studies on ruminant saliva. I. The composition and output of sheep's saliva. Biochem. J. 43:99-109. https://doi.org/10.1042/bj0430099
  25. Merry, R. J., Smith, R. H. and McAllans, A. B. 1987. Studies of rumen function in an in vitro continuous culture system. Arch. Anim. Nutr. Berlin. 37:475-488. https://doi.org/10.1080/17450398709421063
  26. Merten, D. R. 1977. Dietary fiber components: relationships to the rate and extent of ruminal digestion. Fed. Proc. 36:187-192.
  27. Ministry of Agriculture, Fisheries and Food. 1992. Prediction of energy value of compound feeding stuffs for farm animals. Summary of recommendations of a working party sponsored by the Ministry of Agriculture, Fisheries and Food, United Kingdom.
  28. Mould, F. L., Orskov, E. R. and Mann, S. O. 1983. Associative effects of mixed feeds. I. Effects of type and level of supplementation and the influence of rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Technol. 10:15-30. https://doi.org/10.1016/0377-8401(83)90003-2
  29. Nocek, J. E. 1997. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 80:1005-1028. https://doi.org/10.3168/jds.S0022-0302(97)76026-0
  30. Palmquist, D. L. and Schanbacher, F. L. 1991. Dietary fat composition influences fatty acid composition of milk fat globule membrane in lactating cows. Lipids. 26:718-722. https://doi.org/10.1007/BF02535620
  31. Scollan, N. D., Choi, N. J., Fisher, A.V., Enser, M. and Wood, J. D. 2001a. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br. J. Nutr. 85:115-124. https://doi.org/10.1079/BJN2000223
  32. Scollan, N. D., Dhanoa, M. S., Choi, N, J., Maeng, W. J., Enser, M. and Wood, J. D . 2001b. Digestion of long chain fatty acids from different feed sources and their effect on the rumen function of steers. J. Agric. Sci., Camb. 136:345-355.
  33. Scott, T. W., Bready, P. J., Royal, A. J. and Cook, L. J. 1972. Oil seed supplements for the production of polyunsaturated ruminant milk fat. Search 3:170-171.
  34. Simopoulos, A. P. 1988. Diet, exercise and caloric balance. J. Am. Med. Assoc. 260:1953. https://doi.org/10.1001/jama.1988.03410130161047
  35. Stanton, C., Lawless, F., Kjellmer, G., Harrington, D., Devery, R., Connolly, J. F. and Murphy, J. 1997. Dietary influences on bovine milk cis-9, 11-trans conjugated linoleic acid content. J. Food Sci. 62:1083-1086. https://doi.org/10.1111/j.1365-2621.1997.tb15043.x
  36. Van Nevel, C. J. and Demeyer, D. I. 1996. Effect of pH on biohydrogenation of polyunsaturated fatty acids and their Ca-salts by rumen microorganisms in vitro. Arch. Anim. Nutr. 49:151-158. https://doi.org/10.1080/17450399609381873
  37. Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3568-3597. https://doi.org/10.3168/jds.S0022-0302(91)78549-4
  38. Wu, Z., Ohajuruka, O. A. and Palmquist, D. L. 1991. Ruminal synthesis, biohydrogenation, and digestibility of fatty acids by dairy cows. J. Dairy Sci. 74:3025-3034. https://doi.org/10.3168/jds.S0022-0302(91)78488-9

Cited by

  1. vol.100, pp.2, 2016, https://doi.org/10.1111/jpn.12347