A Defect Free Bistable C1 SSFLC Devices

  • Wang, Chenhui (Liquid Crystal Institute, Kent State University) ;
  • Bos, Philip J. (Liquid Crystal Institute, Kent State University)
  • Published : 2003.03.24

Abstract

Recent progress in both low pretilt and high pretilt defect free C1 surface stabilized ferroelectric liquid crystal (SSFLC) devices is reviewed. First, by numerical calculation to investigate the balance between surface azimuthal anchoring energy and bulk elastic energy within the confined chevron layer geometry of C1 and C2, it is possible to achieve a zigzag free C1 state by low azimuthal anchoring alignment with a low pretilt angle. The critical azimuthal anchoring coefficient for defect free C1 state is calculated. Its relationship with elastic constant, chevron angle as well as surface topography effect are also discussed. Second, using $5^{\circ}$ oblique SiO deposition alignment method a defect free, large memory angle, high contrast ratio and bistable C1 SSFLC display, which has potential for electronic paper applications has also been developed. The electrooptical properties and bistability of this device have been investigated. Various aspects of defect control are also discussed.

Keywords

References

  1. D.K. Yang and J.W. Doane, Proc. Soc. Inf. Disp. 1, 759 (1992)
  2. Ph. Mariinot-Lagarde and et. al., Proc. Soc. Inf. Disp. 1, 41 (1997)
  3. H. Kuma, T. Iwakuma, F. Moriwaki, and M. Fukuda et. al., Proc. Soc. Inf. Disp., San Jose, 12 (2001)
  4. N.A. Clark and S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980) https://doi.org/10.1063/1.91359
  5. H. Furue, Y. Iimura, Y. Miyamoto, H. Endoh, H. Fukuro, and S. Kobayashi, Mol. Cryst. Liq. Cryst. 328, 193 (1999) https://doi.org/10.1080/10587259908026059
  6. M. Koden, H. Katsuse, A. Tagawa, K. Tamai, N. Itoh, S. Miyoshi, and T. Wada, Jpn. J. Appl. Phys., Part 1 31, 3632 (1992) https://doi.org/10.1143/JJAP.31.3632
  7. J. Kanbe, H. Inoue, A. Mizutome, Y. Hanyuu, K. Katagiri, and S. Yoshihara, Ferroelectrics 114, 3 (1991) https://doi.org/10.1080/00150199108221566
  8. P. Watson, P. J. Bos, and J. Pirs, Phys. Rev. E 56, R3769 (1997) https://doi.org/10.1103/PhysRevA.56.3769
  9. P. J. Bos and K. R. Koehler/Beran, Ferroelectrics 85, 15 (1988) https://doi.org/10.1080/00150198808007640
  10. R. Kurihara, H. Furue, T. Takahashi, and S. Kobayashi, Proc. Soc. Inf. Disp., 31, 807 (2000)
  11. J. L. Janning, Appl. Phys. Lett. 21, 173 (1972) https://doi.org/10.1063/1.1654331
  12. T. Akahane, K. Itoh, and N. Nihei, Jpn. J. Appl. Phys., Part 1 32, 5041 (1993) https://doi.org/10.1143/JJAP.32.5041
  13. S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, 1999), Ch. 11
  14. W. H. de Jeu, Physical Properties of Liquid Crystalline Materials (Gordon and Breach, New York, 1980), Ch. 6
  15. C. Wang, R. Kurihara, P. J. Bos, S. Kobayashi, J. Appl. Phys. 90: (9) 4452 (2002) https://doi.org/10.1063/1.1407308
  16. J. Xue, in Proceedings of SPIE-the International Society for Optical Engineering (1996), p. 10
  17. R. Kurihara, H. Furue, T. Takahashi, et al., Jpn. J. Appl. Phys. 1 40: (7) 4622 (JUL 2001) https://doi.org/10.1143/JJAP.40.4622
  18. C. Wang, P. J. Bos, M. Wand, and M. Handschy, Soc. Inf. Disp. (SID) 2002 Digest, 33, 34 (2002)
  19. J. Xue, Ph. D thesis, University of Colorado, Boulder, USA (1989)