The Exposure Status and Biomarkers of Bisphenol A in Shipyard Workers

일부 조선업 근로자들의 bisphenol A 노출실태와 생물학적 지표

  • Kim, Cheong-Sik (Department of Preventive Medicine, Seoul National University College of Medicine) ;
  • Park, Jun-Ho (Department of Preventive Medicine and Institute of Occupational Medicine, Yonsei University Wonju College of Medicine) ;
  • Cha, Bong-Suk (Department of Preventive Medicine and Institute of Occupational Medicine, Yonsei University Wonju College of Medicine) ;
  • Park, Jong-Ku (Department of Preventive Medicine and Institute of Occupational Medicine, Yonsei University Wonju College of Medicine) ;
  • Kim, Heon (Department of Preventive Medicine, College of Medicine, Chungbuk National University) ;
  • Chang, Soung-Hoon (Department of Preventive Medicine, College of Medicine, Kunkuk University) ;
  • Koh, Sang-Baek (Department of Occupational Medicine, Daewoo Hospital)
  • 김청식 (서울대학교 의과대학 예방의학교실) ;
  • 박준호 (연세대학교 원주의과대학 예방의학교실 및 직업의학연구소) ;
  • 차봉석 (연세대학교 원주의과대학 예방의학교실 및 직업의학연구소) ;
  • 박종구 (연세대학교 원주의과대학 예방의학교실 및 직업의학연구소) ;
  • 김헌 (충북대학교 의과대학 예방의학교실) ;
  • 장성훈 (건국대학교 의과대학 예방의학교실) ;
  • 고상백 (대우병원 산업의학과)
  • Published : 2003.06.01

Abstract

Objectives : Because shipyard workers are involved with various manufacturing process, they are exposed to many kinds of hazardous materials. Welders especially, are exposed to bisphenol-A (BPA) during the welding and flame cutting of coated steel, This study was conducted to assess the exposure status of the endocrine disrupter based on the job-exposure matrix. The effects of the genetic polymorphism of xenobiotic enzyme metabolisms involved in the metabolism of BPA on the levels of urinary metabolite were investigated. Methods : The study population was recruited from a shipyard company in the f province. A total of 84 shipbuilding workers 47 and 37 in the exposed and control groups, respectively, were recruited for this study. The questionnaire variables included, age, sex, use of personal protective equipment, smoking, drinking and work duration. The urinary metabolite was collected in the afternoon and correction made for the urinary creatinine concentration. The of the CYP1A1, CYP2E1 and UGT1A6 genotypes were investigated using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods with the DNA extracted from venous blood. Results : The urinary BPA level in the welders group was significantly higher than in the control group (p<0.05). The urinary BPA concentration with the wild type UGT1A6 was higher than the other UGT1A6 genotypes, but with no statistical significant. From themultiple regression analysis of the urinary BPA, the regression coefficient for job grade was statistically significant (p<0.05). Conclusions : The grade of exposure to BPA affected the urinary BPA concentration was statistically significant. However, the genetic polymorphisms of xenobiotics enzyme metabolism were not statistically significant. Further investigation of the genetic polymorphisms with a larger sample size is needed.

용접공은 용접과정에서 용접 흄, 중금속 및 bisphenol-A에 노출된다. 따라서 이 연구는 직무노출 메트릭스에 근거하여 근로자들의 내분비 교란물질의 노출실태를 파악하고자 하였다. 또한 생물학적 모니터링에 사용되는 뇨중 대사산물 농도에 영향을 미칠 것으로 생각되는 대사효소의 유전적 다형성 분포를 조사하였으며 이들 유전자가 뇨중 대사산물 배설에 미치는 영향을 연구하고자 하였다. 연구대상자는 경상남도에 있는 모 조선업체에 종사하는 근로자를 대상으로 하였다. 연구대상자는 총 84명으로 용접공 47명과 대조군 37명을 대상으로 하였다. 이름, 연령, 보호구 착용 여부, 흡연습관, 음주여부 등에 대하여 설문조사를 시행하였다. 시료채취는 건강검진이 진행되는 오후에 하였으며 뇨중 BPA는 뇨중 크레아티닌으로 보정하여 측정하였다. 대사효소의 유전자 다형성은 혈액의 백혈구로부터 DNA를 추출하여 제한 효소 절단 단편 다형성(restriction fragment length polymorphism, RFLP)법으로 검사하였다. 흄 중 BPA의 농도는 최대값 229.9 ng/mg, 최소값 5.7 ng/mg, 평균 61.9 ng/mg 이었다. 흄 총 중량과 흄중 BPA 양 간에 상관계수는 0.516으로 양적 선형관계를 보여주었다. 뇨중 BPA 농도는 대조군보다 용접공에서 유의하게 높았다. CYP1A1, CYP2E1, UGT1A6등의 유전자 다형성에 따라 뇨중 BPA 농도에는 차이가 없었다. 뇨중 BPA에 대한 다중회귀분석에서는 노출등급만이 유의한 변수였다. 용접 흄에 노출된 후 뇨중 BPA농도에 영향을 가장 큰 영향을 미치는 것은 노출등급이었으며, 대사효소의 유전적 다형성은 유의한 효과를 나타내지 못하였다.

Keywords

References

  1. Environmental Protection Agency. Special report on environmental endocrine dis-ruption: An effects assessment and analysis. Risk Assessment Forum U.S. Environmental Protection Agency Wash-ington DC 20460, 1997
  2. 국립환경연구원. 99년 내분비계장애물질 조사. 2000, pp 158-159
  3. Olmo MD, Zafra A, Jurado A. Deter-mination of Bisphenol-A(BPA) in the presence if phenol by first-derivative fluorescence following micro liquid-liquid extraction (MLLE). Talanta 1999; 50: 1141-1148 https://doi.org/10.1016/S0039-9140(99)00176-9
  4. Ben-Jonathan N, Steinmetz R. Xenoe-strogens: the emerging story of bisphenol-A. Trends Endocrinol Metabolism 1998; 9: 124-128 https://doi.org/10.1016/S1043-2760(98)00029-0
  5. Bjerregaard P, Gyorkos P. The effect of small concentrations of chemicals with estrogen-like activity in the aquatic environment. I: Ecotoxicological assess-ments and the setting of limit values for chemicals in the environment. Danish Academy of Technical Sciences, 1996. p. 177-184
  6. Engstrom B, Henrik-Eckermann ML, Anas E. Exposure to paint degradation products when welding, flame cutting, or straight-ening painted steel. Am Ind Hyg Assoc J 1990; 51(10): 561-565 https://doi.org/10.1080/15298669091370103
  7. Dodds EC, Lawson. Synthentic oestrogenic agents without the phenanthren nucleus. Nature 1936; 137: 996
  8. Brotons JA. Olea-Serrano MF. Villalobos M, Pedraza V, Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect 1995; 103: 608-612 https://doi.org/10.2307/3432439
  9. Olea N, Pulgar P, Perez P, Olea-Serrano F, Rivas A, Novillo-Fertell A, Pedraza V, Soto AM. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect 1996; 104: 298-305 https://doi.org/10.2307/3432888
  10. Depledge M. The rational basis for the use of biomarkers as ecotoxicological tools. In; Fossi MC, Leonzio(eds). Nondestructive biomarkers in vertebrates. Lewis Publishers; 1994. p. 272-295
  11. Fossi MC. Biomarkers as diagnostics and prognostic tools for wildlife risk assessment: Intergrating endocrine-disrupting chemicals. In Colborn T, vom Saal F, Short P(eds). Environmental endocrine-disrupting chemical: Neural, endocrine, and behavioral effects. Princeton Scientific Publishing; 1998. p. 341-361
  12. Hugget RJ, Kimerle RA, Mehrle PM. Biomarkers: Biochemical, physiology and histological markers of anthropogenic stress. Lewis Publishers; 1992
  13. Peakall D, Shugart L. Biomarkers: Research and and application in the assessment of environmental health. Nato ASI Series. Springer-Verlag; 1993; 119
  14. Knaak JB, Sullivan LJ. Metabolism of bisphenol A in the rat. Toxicol Appl Phamacol 1966; 8(2): 175-184 https://doi.org/10.1016/S0041-008X(66)80001-7
  15. Atkinson A, Roy D. In vitro conversion of environmental estrogenic chemical bisphenol to DNA binding metabolite. Biochem Biophy Res Commun 1995; 210: 424-433 https://doi.org/10.1006/bbrc.1995.1678
  16. Hanioka N, Jinno H, Nishimura T, Ando M. Suppression of male-specific cyto-chrome P450 isoforms by bisphenol A in rat liver. Arch Toxicol 1998; 72: 387-394 https://doi.org/10.1007/s002040050518
  17. Astrakianakis G, Anderson JTL, Band PR, Keefe AR, Bert JL, Le N, Fang. Job-exposure matrixes and retrospective exposure assessment in the pulp and paper industry. Appl Occup Environ Hyg 1998; 13(9): 663-670 https://doi.org/10.1080/1047322X.1998.10390135
  18. Hong-Mei Nam, Heon Kim, Jong-Won Kang et al. A case-control study on effects of genetic polymorphisms of GSTM1, GSTT1, CYP1A1 and CYP2E1 on risk of lung cancer. Korean J Prev Med 1999; 32(2): 123-129
  19. Hayasi S, Watanabe J, Kawajiri K. Genetic polymorphism in the 5' -flanking region change transcriptional regulation of the human cytochrome P450 2E1 gene. J Biochem 1991; 110: 559-565 https://doi.org/10.1093/oxfordjournals.jbchem.a123619
  20. Ritter JK, Yeatman MT, Ferriera P, Owens IS. Identification of a genetic alteration in the code for bilirubin UDP-glucuronosy1 transferase in the UGT1 gene compklex of a Crigler-Najjar type I patient. J Clin Invest 1992; 90: 150-155 https://doi.org/10.1172/JCI115829
  21. Junko S. Sensitive method for the determination of bisphenol A in serum using two systems of high performance liquid chromatography. J Chromatography 1999; 736: 225-261
  22. Yokota H, Iwano H, Endo M, Kobatashi T, Inoue H, Ikushiro S, Yuasa A. Glu-curonidation of the environmental oestro-gen bisphenol A by an isoform of UDP-glucuronosy1transferase, UGT2B1, in the rat liver. Biochem J 1999; 340: 405-409 https://doi.org/10.1042/0264-6021:3400405