
논문 03-01-16

(144)

A Unified Data Model for Conceptual

Data Modeling

개념적 데이타 모델링을 위한 통합 데이타 모델

羅 然 黙*

Yun-mook Nah*

Abstract

 In this paper, a conceptual data model, called the UDM(Unified Data Model), to efficiently represent

database structures related with object technology and complex structured data, is proposed. This model

integrates major features of modern data models, such as E-R model, Semantic Object Model, and UML,

especially from the viewpoint of database design. This model is basically a simplified, but extended version

of the Object-Relationship Model, which was proposed to model complex structures of temporal-spatial

multimedia data.

 This model incorporates some of the important semantic and structural information of modern database

applications and it is designed to support all of the major logical database models, including relational,

object-relational, object-oriented, and (semi-)structured databases. A special diagrammatic technique, called the

UDD(Unified Data Diagram), is introduced as a tool for database design. Also, possible ways to derive

logical views of data from this unified data model are presented. The proposed model can be utilized as a

convenient and practical tool for conceptual database designs.

 Keywords: Unified Data Model, Unified Data Diagram, conceptual data model, database design, data

modeling

요 약

 본 논문에서는 객체 기술과 복잡한 구조적 데이터와 관련된 데이터베이스 구조를 효율적으로 표현하기 위한

통합 데이타 모델(UDM)이라고 하는 개념 데이터 모델을 제안한다. 이 모델은 E-R 모델, 의미 객체 모델, UML

등의 데이타 모델의 주요 기능을 데이타베이스 설계 관점에서 통합한 것이다. 이 모델은 시공간 멀티미디어 데이

타의 복잡한 구조를 모델링하기 위해 제안된 객체-관계 모델을 단순화시키고 일부 기능을 확장시킨 버전이다.

 이 모델은 현대적인 데이터베이스 응용의 주요한 의미적, 구조적인 정보의 표현을 지원하며, 관계, 객체-관계,

객체-지향, (반-)구조 데이터베이스 등 주요 논리적 데이터베이스 모델을 지원하도록 고안되었다. 데이터베이스

설계를 위한 도구로 통합 데이타 다이아그램(UDD)을 제안하며, 이 통합 데이타 모델로부터 논리적 뷰를 유도하

기 위한 방법도 제안한다. 제안된 모델은 다양한 개념적 데이터베이스 설계를 위한 편리하고 실용적인 도구로 활

용될 수 있다.

*檀國大學校 電氣電子컴퓨터工學部

School of Electrical, Electronics, and Computer

Engineering, Dankook University

※ 이 연구는 2002학년도 단국대학교 대학연구비의

지원으로 연구되었음.

接受日:2003年 5月 23日, 修正完了日:2003年 22月 10日

논문 03-01-16

(145)

I. Introduction

 The conceptual modeling of data has been an

important issue in conceptual database design. In

database world, the most popular conceptual

modeling tool is the E-R(Entity-Relationship)

model[1,2] and an alternative is the Semantic Object

Model[3], which has a smaller following. In

object-oriented software engineering, the

UML(Unified Modeling Language) is well known as

unanimous notation for object-oriented software

design[4].

 These models have their own strengths and

weaknesses. The E-R model is well suited for

relational database design, but its capability to

represent object-relational database and

object-oriented database structures has been

challenged. The Semantic Object Model, which is

considered to be richer and easier than the E-R

model by some researchers, provides a more

natural view of application data and represents set

values and complex object structures having nested

attributes, but its capability to represent object

database structures is not well studied. The UML

model, which unifies major features of some

prominent methods, such as Booch, Jacobson's

OOSE, and Rumbaugh's OMT(Object Modeling

Technique), is the powerful method for

object-oriented software analysis and design, but it

lacks in important database design concepts of

object-relational databases and object-oriented

databases, such as OID(Object IDentifier), extent,

key, and complex data structures. The modeling

power of major existing data models is summarized

in Table 1.

 To efficiently represent database structures related

with object technology and complex structured data,

such as XML and SGML, we need a new

conceptual data model, which is powerful than the

E-R model, includes main features of modern

modeling methods, and well customized to the

database needs. This paper presents a unified

conceptual data model, called the UDM(Unified

Data Model), which has most of the advantages of

the above models. As we begin our unification, we

established three goals for our work:

∙ to create a conceptual data model which is a

superset of existing conceptual models

∙ to create a conceptual data model that can

support all the major logical database models,

including relational, object-relational, object-oriented,

Table 1. Comparison of representative conceptual data modeling tools

 E-R SOM UML XML DTD

 entity/class yes yes yes yes

 weak entity yes version object aggregation not applicable

 attribute yes yes yes yes

 set-value no yes(0,1,N) yes not applicable

 nested attribute no yes no not applicable

 binary HAS-A yes yes yes not applicable

 relationship

 cardinality
 yes(0,1,N,M,P) yes(0,1,N) yes(0, 1, *) yes(*, +, ?)

 n-ary HAS-A yes no no not applicable

 IS-A yes yes yes not applicable

 aggregation no no
 composition,

 aggregation

 sequence,

 choice

 best suitable R DB H/N/R DB OOP, OODB XML DB

A Unified Data Model for Conceptual Data Modeling

(146)

 and (semi-)structured databases

∙ to minimize the number of symbols and

simplify the shape of symbols, while allowing users

to still use the well known previous modeling

symbols

 We have previously proposed a data model, the

Object-Relationship model, aiming to represent

temporal-spatially structured multimedia data[5,6].

This model is quite powerful in representing

multimedia information structures, such as temporal

sequence and time synchronization, but a little bit

complex. We tries to adopt the modeling capability

of complex data structures from the

Object-Relationship model, while eliminating less

useful constructs and simplifying some complex

constructs.

 This paper is organized as follows. Section 2

briefly explains the evolution of conceptual data

models. In section 3, we propose the unified data

model which describes real world in terms of

information objects and relationships. Its

diagrammatic technique, called the UDD(Unified

Data Diagram), is described with examples in

section 4. Section 5 presents how to derive logical

views of data for relational, object-relational,

object-oriented, and (semi-)structured databases from

this unified data model. Finally, section 6 concludes

the paper.

II. Evolution of Data Model

 In database terms, formatted data means

traditional data, such as numeric and character

data, and unformatted data means new kinds of

data, such as text, graphics, image, audio,

animation, video, spatial data, time series data, and

document data. We might again distinguish

structured data, such as document, multimedia

document, multimedia information, and other

complex structures, from semi-structured data, such

as XML data, SGML data, and web page data.

 Data models can be divided into conceptual data

models and logical data models. Conceptual data

models describe database structures in our minds

by using high level information units, such as

entities and relationships. The E-R model, semantic

network model, semantic object model,

object-oriented model, and object-relationship model

can be classified as conceptual data models. Logical

data models describe information structure for

database end-users and application programmers by

using well known information units, such as

records, relations and classes. The hierarchical

model, network model, relational model,

object-oriented model, object-relational model are

well known examples of logical data models. The

object-oriented model can be regarded as both

conceptual and logical data model, because its

conceptual database structures and logical database

structures are almost the same.

 The major characteristics of each conceptual data

models are as follows:

∙ entity-relationship model(1976): This model

describes real world by using entities and

relationships. Specially, it focuses on how to

represent association relationships with their

relationship cardinality, such as 1:1, 1:N, N:M.

∙ object-oriented model(late 80s): A new

relationship, generalization, is emphasized to deal

with inheritance of structural and behavioral

properties. According to the principle of

ADT(Abstract Data Types), this model tries to

represent both data structures and possible

operations on them.

∙ complex object model(late 80s-early 90s): This

model focuses on nested tuple structures and set

values.

∙ semantic-object model(1988): This model

describes database structures as a collection of

semantic objects, which itself is a named collection

of attributes that sufficiently describes a distinct

identity. When compared to the E-R model terms, a

semantic object can be regarded as an entity with

normal attributes(so called simple attributes), set

value attributes(so called multi-value attributes),

전기전자학회논문지(Journal of IKEEE) Vol. 7. No.2

(147)

nested attributes(so called group attributes), and all

its related relationships(so called object attributes).

∙ (semi-)structured data model(late 90s): Emphasis

is put on hierarchical data structures.

 From the above short survey of data models, we

can speculate that data models are evolving toward

the direction of representing more relationships and

more complex structures for unformatted and

(semi-)structured data.

 According to the evolution of conceptual data

models and new needs of modern applications,

logical data models are also changing to adopt

object technology and structuring capability.

III. Unified Data Model

 Database consists of information objects, which

are independent information units, and their

relationships. We will use the traditional modeling

terms, such as entities, attributes, types, and

relationships. But, in our unified model and in our

modern age of object technology, the distinction

between them become less clear, because

entities(classes) can be used as types and attributes

can be extended to classes, and relationships are

represented as attributes in later stages of database

design. Therefore, this situation results in lots of

confusions to the E-R and relational model-oriented

designers. Nevertheless, we still need such

distinction among them in the initial design stage

like conceptual data modeling. One main aim of

this paper is to make such confusions among major

design terms clear.

3.1 Information Objects

 An information object(or shortly object) is

something that can be identified, such as an entity

of the E-R model, a class of object-oriented model,

and an element of XML/SGML document models.

In this paper, we will use the terms, such as

information object, object, entity, class, and

element, interchangeably. Examples of information

objects are PERSON, EMPLOYEE, PROFESSOR,

DEPARTMENT, ARTICLE, and PAPER. The

existence of some information objects can be

dependent on other information objects.

 In relational database age, entities are clearly

distinguished from data types, or domains. But, in

this object age, a user-defined information

object(actually, the set of occurrences of that

information object) can be usually used as data

types of other information object's attributes. In this

paper, we will regard the representative system

data types, such as Integer, Decimal, VARCHAR,

etc, as basic types(BTs); we will regard information

objects(actually, their extensions), such as PERSON,

ADDRESS, NAME, etc, as user-defined types(UDTs),

if they are intended to be used as data types of

other information object's attributes.

3.2 Attributes

 Information objects have attributes or properties

that describe the information object's characteristics.

Examples of attributes are Name of Person, Salary

of Employee, and Title of Article. Each attribute

can be assigned an identifying role, such as key,

identifier, unique identifier, object identifier(OID),

and user-generated object identifier.

 But, in this object age, attributes can be extended

as independent types or classes. In such cases,

entity-attribute relationships become inter-entity

relationships.

3.3 Relationships

 Information objects are containers of independent

information(i.e. information islands), while their

relationships are bridges to cross over among these

information islands. There are three kinds of

relationships which take important role in database

structuring and information extraction.

∙ association(HAS-A): Information objects can be

associated with one another. If an information

object, E1, is associated with another information

object, E2, we denote this bidirectional relationship

as E1<h>E2. (This notation can cover only binary

A Unified Data Model for Conceptual Data Modeling

(148)

case. For more than binary cases, we have to use

diagrammatic symbols.) An example of this

relationship is "EMPLOYEE HAS-A relationship

with DEPARTMENT".

∙ generalization(IS-A): An information object, E2,

can inherit structures, relationships, and behaviors

of its parent information object, E1. We denote this

unidirectional relationship as E1<|E2, which can be

read as "E2 IS-A E1". If E2 inherits from E1, we

call E1 as supertype or superclass and E2 as

subtype or subclass. An example is "EMPLOYEE

IS-A PERSON".

∙ aggregation(PART-OF): An information object, E,

consists of other information objects, P1, P2, ..., Pn.

An example is "PAPER consists of HEAD and

BODY" or "HEAD and BODY are PART-OF

PAPER". In the unified data model, entity-attribute

relationships are regarded as a special case of

aggregation.

 A relationship, that is not classified as

generalization or aggregation relationship, can be

regarded as an association relationship. Also, we

can classify the above relationships as unidirectional

relationsips(IS-A, PART-OF) and bidirectional

relationsips(HAS-A). Aggregation relationships can

be further classified as follows.

∙ simple aggregation(tuple aggregation): An

information object, E, simply consists of other

information objects, P1, P2, ..., Pn. We denote this

as E<p>(a1:P1, a2:P2, ..., an:Pn), where ai means

attribute names of E. Entity-attribute relationships

are regarded as a special case of aggregation,

where each Pi is basic type BTi, i.e., E<p>(a1:BT1,

a2:BT2, ..., an:BTn), which has been modeled simply

in the E-R diagram as E<p>(a1, a2, ..., an).

∙ sequence aggregation: An information object, E,

consists of a sequence of other information objects,

P1, P2, ..., Pn. We denote this as E<p><a1:P1,

a2:P2, ..., an:Pn>, where ai means attribute names

of E.

∙ parallel aggregation: An information object, E,

consists of a parallel occurrence of other

information objects, P1, P2, ..., Pn. We denote this

as E<p>[a1:P1, a2:P2, ..., an:Pn], where ai means

attribute names of E.

∙ choice aggregation: An information object, E,

consists of one of alternative information objects,

P1, P2, ..., Pn. We denote this as

E<p>(P1|P2|...|Pn).

 The introduction of sequence, parallel, and choice

aggregations are to represent complex structures of

modern data, such as multimedia documents and

XML/SGML documents.

 As we will see later, one important thing to note

is that these relationships are finally represented as

attributes or used to add additional attributes, thus

changing the numbers of attributes in the later

stages of database design, such as logical or

physical database design.

3.4 Changes of Attribute Domains to Information

Objects

 Attributes(actually, the domains or data types of

those attributes) can be modeled as independent

information objects, by means of object technology.

For example, the information object

EMPLOYEE<p>(Name:CHAR, Address:VARCHAR),

shortly EMPLOYEE<p>(Name, Address), can be

extended to EMPLOYEE<p>(Name:NAME,

Address:ADDRESS), where NAME and ADDRESS

are UDTs. In such case, the entity-attribute

relationship between the entity EMPLOYEE and

attributes Name and Address, changes to the

entity-entity aggregation relationship between entity

EMPLOYEE and two part entities, NAME and

ADDRESS.

3.5 Cardinality

 In the E-R model, the only relationship that

allows multiple value cardinality is HAS-A

association relationship. In the unified data model,

the multiple value cardinality can be applied to

both attributes and inter-entity relationships.

전기전자학회논문지(Journal of IKEEE) Vol. 7. No.2

(149)

∙ attribute cardinality: This cardinality represents

the allowed occurrences of attribute values in the

given entity-attribute relationship. By using this

attribute cardinality, we can represent set value

attributes and ordered set value attributes.

∙ relationship cardinality: This cardinality

represents the allowed occurrences of participating

entities in the given inter-entity relationship.

 We recommend the form 'min.max' with the

symbols, 0, 1, N, but users can use well known

existing symbols, such as 0, 1, N(multiple), ?(0 or

1), *(0 or more), +(1 or more), alternatively. In

representing cardinalities, we denote set value as

'min.max', while ordered set value as '<min.max>'.

Typical examples are:

∙ 0.1: The minimum cardinality is 0 and the

maximum cardinality is 1. In UML and XML style,

this is usually written as '?'.

∙ 0.N: The minimum cardinality is 0 and the

maximum cardinality is N. In UML style, this is

usually written as '*' or '0..*'. In XML, this is

simply written as '*'.

∙ <0.N>: This means an ordered set with

minimum cardinality 0 and maximum cardinality

N.

 In a unidirectional relationship, cardinality can be

assigned onto at most one side. In a bidirectional

relationship, cardinality can be assigned onto both

sides. For example, in the case

EMPLOYEE<p>(Name, Phone), the attribute Name

can be assigned the cardinality '1.1' and the

attribute Phone can be assigned the cardinality

'1.N'. We can denote this by using subscripts as

EMPLOYEE<p>(Name1.1, Phone1.N). In the

bidirectional case of EMPLOYEE <h>

DEPARTMENT, the entity EMPLOYEE can be

assigned the cardinality '0.N' and the entity

DEPARTMENT can be assigned the cardinality '1.1'.

We can denote this by using subscripts as

EMPLOYEE0.N<h>1.1DEPARTMENT.

3.6 Comparison to the E-R model terms

 Table 2 compares the major conceptual modeling

terms of the unified data model with those of the

E-R model. The distinction among the terms, such

as entity, attribute, domain, and data type become

less clear in the unified data model.

Table 2. Comparison of major modeling terms

 E-R model Unified Data Model

 entity, in general information objects, such as entity, class and element

 entity type information object type

 entity set information object extension

 entity (occurrence) information object (instance)

 attribute attribute

 value set, domain
 value set of basic types or

 extension of information objects

 data type
 BTs, such as NUMBER, DECIMAL, CHAR, etc, and

 UDTs, which are names of information objects

 entity-attribute

 relationship

 regarded as entity-to-BT aggregation relationship and

 can be extended to entity-entity aggregation

 relationship

 entity-entity relationship entity-entity relationship

 relationship cardinality attribute cardinality and relationship cardinality

A Unified Data Model for Conceptual Data Modeling

(150)

IV. Unified Data Diagram

4.1 Symbols

 Figure 1 shows the diagrammatic symbols of the

unified data model. The major symbols are adopted

from the E-R diagram and the UML diagram,

according to our design principles. Each information

object type is represented using a rectangular box,

as in the E-R and UML. The double-sided rectangle

means weak entity, whose existence is dependent

on another entity. Each rectangle can have one or

more sections inside, each of which can represent

information object name, attribute list, method list,

and constraint list, just as in UML.

 Attributes are represented as ellipses or small

circles. A black small circle represents a key

attribute. Alternatively, all attributes can be listed in

textual form within the attribute list section of

information object rectangle.

 Large non-square diamond, triangle and small

square diamond each represents association(HAS-A),

generalization(IS-A), and aggregation(PART-OF)

relationship. Small square diamonds, representing

aggregation, are further classified as normal

diamond, diamond with 'arrow symbol' inside,

diamond with 'equal symbol' inside, and diamond

with 'bar symbol' inside, meaning simple

aggregation, sequence aggregation, parallel

aggregation, and choice aggregation, respectively.

 Figure 1. Symbols of unified data diagram

 On the relationship arc linking related entities,

name labels can be written. For a bidirectional

relationship, HAS-A, name labels can be assigned

on both side of the arcs. But, in case of

unidirectional relationship, PART-OF, name labels

can be assigned on one side only. These name

labels can be regarded as attribute names of

appropriate entities and also used as attribute

names of tables or classes in logical database

design stage.

4.2 Representation of Information Objects

 In this section, we introduce a diagrammatic

technique for exhibiting information objects, which

represent entities, classes, or elements.

4.2.1 Information Objects

 Figure 2 shows an entity EMPLOYEE, which

contains attributes, such as Eno, Name and Salary.

The first diagram is in the traditional E-R diagram

style; the second is in the E-R diagram style of [3];

and the third is in the semantic object diagram or

UML class diagram style.

Figure 2. Alternatives of entity representation

 As described earlier, entity-attribute relationship

can be regarded as entity-entity aggregation

relationship as shown in Figure 3, which is another

alternative for the diagrams in Figure 2, if we treat

basic types, such as NUMBER, CHAR, and

DECIMAL, as entities. In this figure, the name

labels beside the relationship arcs represent attribute

names, while the numeric labels represent minimum

and maximum cardinality of each attributes. Using

this kind of notation, we can easily extend domains

of each attributes by replacing the name of each

leaf boxes as names of other user-defined

information objects.

전기전자학회논문지(Journal of IKEEE) Vol. 7. No.2

(151)

Figure 3. Entity-attribute relationship represented as

entity-entity relationship

4.2.2 Information Objects with Set Values

 In the unified data diagram, we can easily

represent set value attributes by using the numeric

labels with maximum cardinality value greater than

1. In Figure 4, the Phone attribute of the

EMPLOYEE entity can have multiple values.

Figure 4. Alternative representation of entities with set

values

4.2.3 Weak Entities

 The notation for weak entities, which are

existentially dependent on parent entities, is similar

with the E-R diagram as shown in the left side

diagram of Figure 5. They also can be represented

as parts of other entities by using aggregation

relationships as shown in the right side diagram of

Figure 5. The meaning of existential dependency

can be added to the right side diagram, by

changing the rectangle of DEPENDENT entity to a

double-sided rectangle. The relationship between

EMPLOYEE entity and DEPENDENT entity can be

treated as association or aggregation, depending on

the data modeler's decision, but both of them

usually result in the same logical representation.

Figure 5. Alternatives of weak entity representation

4.2.4 Nested Attributes

 In object-oriented models and complex object

models, it is usual to have nested attributes. Figure

6 shows various alternatives to represent the nested

attribute Address of the entity EMPLOYEE. The

first diagram is in the semantic object diagram

style; the second one represents it by using an

entity-entity aggregation relationship between the

entity EMPLOYEE and the anonymous entity with

(EMPLOYEE's) attribute name Address; and the

third one is similar with the second, except that

unnested attributes are shown by using small

circles.

Figure 6. Alternatives of nested attribute representation

4.3 Representation of Relationships

 In this section, we introduce a diagrammatic

technique for exhibiting relationships between

information objects by using well known examples.

4.3.1 Association and Generalization

 Figure 7 shows a university schema example

described in [10] for IBM Universal Database. Two

basic entities are PERSON and DEPT(department).

University peoples come in various flavors, such as

EMP(employee) and STUDENT. Within employees,

there are again various flavors, such as

PROF(professors)

A Unified Data Model for Conceptual Data Modeling

(152)

.

Figure 7. An example of association and generalization

relationships

4.3.2 Aggregation

 Figure 8 shows an example schema used in the

manual of Informix Universal Server, which allows

user-defined data types to be used as domains. The

entity EMPLOYEE has four attributes, Eid, Age,

Ename and Eaddr, where the domains of Ename

and Eaddr are user-defined types NAME and

ADDRESS. The entity ADDRESS has again four

attributes Street, City, State, and Zip, where the

domain of Zip is user-defined type ZIP.

Figure 8. An example of aggregation relationships

4.3.3 Modeling of Structured Data through

Advanced Aggregation

 We can utilize aggregation relationships to

represent complex structured data, such as

multimedia documents and XML/SGML documents.

Figure 9 shows an example schema which

corresponds to the following DTD explained in [8].

<!ELEMENT article (author+, title, year?,

(shortversion|longversion))>

<!ATTLIST article type CDATA>

<!ELEMENT author (firstname?, lastname)>

Figure 9. An example of sequence and choice

aggregation relationships

4.3.4 Comprehensive Example

 Figure 10 shows a combind schema, which

extends Figure 7 to include information object

PAPER, which is modeled as structured data using

sequence aggregation and ordered set cardinality.

Figure 10. More comprehensive example

전기전자학회논문지(Journal of IKEEE) Vol. 7. No.2

(153)

V. Derivation of Logical Data Models

 This section describes how to transform

conceptual data structures described in the unified

data model into logical database designs, supported

by popular logical data models, such as relational,

object-relational and object-oriented data models,

and XML/SGML databases.

5.1 Derivation of Relational Model

 The transformation rules for the relational model

are relatively well known. Each set values and each

nested attributes, as well as each entities, are

transformed into a relation, with inclusion of

foreign key attribute(s) to dependent tables. Each

HAS-A relationship is transformed into foreign key

attribute(s) or an independent intersection relation,

according to their relationship cardinality(1:1, 1:N,

N:M). There are two or more design alternatives in

representing IS-A relationships. Two of the possible

methods are horizontal partitioning and vertical

partitioning using one table for each entity as

explained in [10]. For PART-OF relationships, all

detail aggregation semantics are ignored. These

relationships can be transformed by using the same

method for 1:N HAS-A relationship.

5.2 Derivation of Object-Relational Model

 The transformation methods are a little bit

different according to the target object-relational

platforms, because the features of each platforms

are different. The major object features, such as

OIDs, inheritance of type/table hierarchy, methods,

user-defined data types, nesting of structured types,

collection-valued attributes, and path expressions,

are not fully covered by most of the existing

object-relational DBMSs. For example, IBM UDB

V5.2 supports user-generated OIDs and inheritance

of table/view hierarchy, but does not support

nesting of structured types and collection-valued

attributes. Oracle 8 supports pointers(OIDs) by REF

attributes, and collection types, such as array types

and table types, but does not provide inheritance of

table/view hierarchy. The simplest guideline for

object-relational cases is to use the transformation

rule of relational cases for certain features that are

not directly supported by the target object-relational

platforms.

 Therefore, each set values and each nested

attributes can be directly transformed into

set-valued attributes and nested structured attributes

on some platforms, or each of them will be

transformed into a relation similar to the relational

cases.

 Each HAS-A relationships is directly represented

as OID attribute(s) referencing related objects or an

independent relation containing both OIDs

referencing related tables(objects), or simply

transformed into foreign key attribute(s) or an

independent intersection relation, also according to

their relationship cardinality. One of such detail

transformation guideline for HAS-A relationships

with cardinality 1:1, 1:N, N:M is proposed, on the

platform directly supporting OIDs(REF attributes)

and collection values[11].

 There can be much more design alternatives in

representing IS-A relationships, if they are

transformed by following the transformation rules

of relational case, because we can use OID

attribute(s) instead of foreign key attribute(s) in

vertical partitioning. But, if the system directly

supports inheritance of type/table hierarchy, we

don't have to worry about the alternatives of

relational structures. Users and programmers can

assume that the logical representation of a table

hierarchy is in the form of one table for each entity

in the IS-A hierarchy, but each table would contain

all of the columns including inherited attributes. In

such cases, the physical implementation structures

are determined by the system. For example, IBM

UDB represents one table hierarchy as a physical

table, which is a union of the columns required to

store rows of any subtables.

 For PART-OF relationships, some detail semantics

of tuple aggregation and sequence aggregation can

be represented by utilizing OIDs, nesting of

structured types, and collection-valued or

A Unified Data Model for Conceptual Data Modeling

(154)

array-valued attributes.

5.3 Derivation of Object-Oriented Model

 The mapping from conceptual structures to

logical structures in object-oriented model is

relatively simple and straightforward, because the

object-oriented platform usually support important

object features, such as OIDs, inheritance of class

hierarchy, collection and set values. Each set values

is directly represented as set-valued attributes. Each

nested attributes can be directly represented(e.g., on

O2) or represented as an independent class, with

addition of a relationship or inclusion of an OID

attribute to the parent class.

 Each HAS-A relationship is directly represented,

but usually bidirectionally. In the ODMG 3.0

standard, each relationship is denoted by using the

keyword relationship with unique relationship

name instead of OID attribute, in both of the

related classes. Each IS-A relationship is directly

supported by the system, resulting in one class per

each entity in IS-A hierarchies. Each PART-OF

relationship can be represented by using the same

method for HAS-A relationships. In some systems,

the detail meaning of aggregation, such as

existential dependency and exclusive/shared

ownership, is directly supported.

5.4 Derivation of XML/SGML Databases

 It seems that the association and generalization

relationships are less important or not useful in

XML/SGML-related document databases. But,

attribute or relationship cardinalities and various

aggregations are deeply related with this platform.

The mapping procedure is also simple and

straightforward. Each information object is

represented as an ELEMENT tag. The PART-OF

relationship cardinalities, such as 0.1, 1.N, 0.N, are

transformed into cardinality symbols ?, +, *,

respectively. A sequence aggregation is represented

by using XML sequence notation with comma(,)

symbol and enclosing parenthesis. A choice

aggregation is represented by using XML logical-OR

notation with bar(|) symbol and enclosing

parenthesis.

VI. Conclusion

 We have proposed a unified conceptual data

model by integrating major features of

representative conceptual data models, such as the

E-R model, the Semantic Object Model, and the

Unified Modeling Language and enhancing some

features. We can represent every conceptual

database structures in terms of information objects

and their relationships. Information objects, or just

simply objects, represent entities, classes, and

elements. Their relationships are association,

generalization, and aggregation, where aggregation

relationships are further refined to represent more

complex PART-OF semantics of modern database

applications. We have clarified how attributes,

attribute-entity relationships, and attribute

cardinalities are extended to entities, relationship

cardinalities, and entity-entity relationships.

 A special diagrammatic technique is also

introduced for conceptual database designs. We also

presented the transformation methods of conceptual

structures described in the unified data model into

popular logical structures. We strongly believe that

this unified conceptual data model can be utilized

in the conceptual database design stage for various

logical database platforms, such as relational,

object-relational, object-oriented, and

(semi-)structured databases.

References

[1] Peter Chen, "The Entity-Relationship Model -

Toward a Unified View of Data," TODS, 1(1),

전기전자학회논문지(Journal of IKEEE) Vol. 7. No.2

(155)

pp.9-36, March 1976.

[2] David M. Kroenke, The Entity-Relationship

Model(Chapter 3), Database Processing(8th Ed.),

Prentice Hall, pp.51-78, 2002.

[3] C. Batini, S. Ceri, and S.B. Navathe, Conceptual

Database Design: An Entity Relationship Approach,

Benjamin Cummings, August 1991.

[4] David M. Kroenke, The Semantic Object

Model(Chapter 4), Database Processing(8th Ed.),

Prentice Hall, pp.79-117, 2002.

[5] Booch, Jacobson, and Rumbaugh, The Unified

Modeling Language User Guide, Addison Wesley,

1999.

[6] Yunmook Nah and Sukho Lee,

"Object-Relationship Model for Conceptual Modeling

of Multimedia Data," Advanced Database Research

and Development Series, Vol.3, World Scientific,

pp.125-132, 1992.

[7] Yunmook Nah and Sukho Lee, "Two-level

Modeling Schemes for Temporal-Spatial Multimedia

Data Representation," in Proc. of Int'l Conf. on

Database and Expert Systems Applications(DEXA),

Springer-Verlag, Spain, Valencia, pp.102-107, Sept.

1992.

[8] Alin Deutsch, Mary Fernandez, Daniela Florescu,

Alon Levy, and Dan Suciu, "A Query Language for

XML," www.research.att.com/~mff/files/final.html.

[9] Jayavel Shanmugasundaram, et al., "A General

Technique for Querying XML Documents using a

Relational Database System," SIGMOD Record, 30(3),

pp.20-26, Sept, 2001.

[10] Michael Carey, et al., "O-O, What Have They

Done to DB2?," in Proc. VLDB, pp.542-553, 1999.

[11] Christian Soutou, "Modeling relationships in

object-relational databases," DKE, 36(1), pp.79-107,

Jan. 2001.

저 자 소 개

 羅 然 黙 (正會員)

1964년 1월 19일생.

1986년 서울대학교 컴퓨터공학과

공학사, 1988년 서울대학교 컴퓨

터공학과 공학석사, 1993년 서울

대학교 컴퓨터공학과 공학박사.

1991년 IBM T. J. Watson 연구소

객원연구원, 2001년∼2002년

University of California, Irvine

객원교수, 1993년∼현재 단국대학교 전기전자컴퓨터공

학부 부교수.

주관심 분야 : 데이타베이스, 데이타 모델링, 멀티미디

어 정보 검색, 이동 객체 데이터베이스.

