컴포넌트 기반 SCORM 표준 LMS 의 개발 방법론 연구
 김강석 ${ }^{+}$. 김기셕 ${ }^{+}$

요 약

본 논문에서는 e -learning의 컨뎬츠 표준화 연구에 있어 국내외적으로 관심이 집중되고 있는 ADL 의 SCORM 표준울 따르는 LMS률 개발하기 위해 컴포넌트 구조에 기반한 개발 방법론을 제 시한다. 또한 JSP, EJB 둥 J2EE 기반의 분산 객제 컴포넌트에 기반하여 개발된 LMS인 iOneLMS 를 SCORM 표준을 따르는 LMS로 변환하기 위해 제시된 방법론예 따라 SCORM 핵심 모둘올 설 계하고 J2EE 기반의 EJB 컴포넌트로 구현하였다. SCORM 컴포넌트 모둘은 컨텐츠 들여오기, 강 좌둥록하기, 수강 및 학습 데이터 수집 둥 세 모둘로 나누어 구현하도록 하였으며, 구현 과정에서 ADL 및 AICC 에서 제곰하는 클래스 라이브러리를 일부 재사융 하였다.

A Study on Development Methodology of SCORM Standard LMS Based on the Component Architecture

Kang-Suk Kim ${ }^{+}$. Kiseok Kim ${ }^{+}$

Abstract

In this paper, we propose a development methodology based on the component architecture to develop the LMS that follows ADL's SCORM standard, which is interested internally and externally in the e-learning contents standardization research. In like manner, we designed the SCORM core module and implemented the EJB component based on J2EE through the sugested methodology for the conversion of SCORM Conformance LMS, from iOneLMS which was developed based on distributed object component like JSP, EJB, etc. The SCORM component modules were implemented by three modules - content importing, course registering, and taking course and gathering the learning data. In the process of implementation, we used the part of the class library that was supported by the ADL and AICC again.

1. 서 튼

IT 기술 및 인프라의 구축에 따라 사이버교육 부분 역시 기술과 시장에 있어서 많은 발전을 이 루고 있으며 이와 동시에 사이버교육에 참여하고

[^0]있는 각 기관 및 단채들에서 개별적으로 이루어 지던 기술 개발 및 방법론 연구가 개별 연구에 따르는 비효율성을 줄이고 동시에 교육의 질을 높이기 위해 미국과 유럽 둥을 중심으로 기술 표 준화률 위한 노력으로 초점이 맞춰지고 있다. 미 국의 경우 사이버교육 표준화 기구들인 IEEE, AICC, IMS, ARIADNE 둥의 연구들을 토대로 정부주도 연구기관인 ADL 예서 SCORM 이라는

표준화 스펙을 제시하여 각 교육계 및 산업계에 서 이러한 표준화 스푝올 따르도록 지원하고 있 다. [1,2]

우리나라의 교육환경에 적합한 표준화 안이 제 시되지 않은 현 시점에서 국제적 표준화의 흐롬 을 주도하는 ADL 의 SCORM 을 적용하는 LMS 및 컨텐츠들의 개발이 필요하다고 여겨진다.

국내에서도 사이버교육 기관 및 시스템들이 표 준화에 따르고자하는 더 많은 노력들이 있기를 기대하면서 본 논문에서는 표준화룰 고려하지 않 고 개발된 LMS인 iOneLMS를 사이버교육 표준 화에서 주도적 흐롬올 잡고 있는 ADL 의 SCORM 스펙을 따르는 LMS로 변환하였다.

SCORM 스펙 중 LMS 에 대한 표준을 제시하 는 Run-Time Environment는 세 가지 요소로 구 성된다. 첫째는 진수(Launch)이다. 이는 학습 객 체가 LMS상에서 어떻게 시작 또는 실행되는지 에 대한 메카니즘을 말한다. 둘姏는 API인데 이 는 학습이 진행되는 동안 학습객체와 LMS 간의 정보 전달을 가능하계 하는 함수들로 구성된다. 이 API 를 통하여 학습자의 학습 정보가 실시간 으로 LMS 에 전송되고 LMS 로부터 학습자 개인 정보가 Client로 전달되어 학습 과정에 활용될 수 있게 된다. 셋째가 Data Model이다. 이는 API가 정보를 전달할 때 어떠한 포맷으로 정보를 전달 할 것인가에 대한 정의라 할 수 있다. 공통의 Data 모델과 표준화된 API 를 사용합으로써 서로 다른 LMS간에서 컨텐츠의 공유 및 재사용이 가 능하게 되는 것이다.[2]

이상의 SCORM Run-Time Environment 세 요소들을 기능적인 측면에서 분석하고 ADL 파 AICC 에서 제공하는 클래스들을 재사용함과 동시 에 iOneLMS와 동일한 개발환경 즉, EJB, JSP 등을 사용하여 SCORM 표준화를 위한 컴포넌트 를 구현하여 iOneLMS를 SCORM에 순옹하는 LMS로 변환하기 위한 구현방법을 제시하며 구 현시 고려사항 둥에 대해 이하에서 다루고자 한 다.

2. 선행연구

2.1. SCORM Run-time Environment 구성요 소

SCORM RTE(Run-Time Environment)는 컨 텐츠의 재사용 및 서로 다른 LMS에서의 상호운 용을 위해 컨텐츠의 실행 절차 및 방법에 있어 아래 세 가지 스펙을 제시한다.

Launch

런치는 학습 활동을 하기 위해 최초로 학습자 료롤 불러오는 것에 있어 특정 LMS의 구현방법 에 구애받지 않고 학습자료의 전달이 가능한 방 법을 제시한다. SCORM 1.2 에서는 학습자료들의 순서화(Sequencing)와 이동(Navigation)에 대한 표준안에 대해서는 언급하지 않으나 이러한 순서 화와 컨텐츠 이동의 책임을 LMS가 가져야 하는 것에 대해서는 분명히 하고 있다. 즉, 어떠한 학 습자료를 런치시켜야 하는가에 대해서는 컨텐츠 구조, 학습자 정보 둥올 고려하여 LMS가 결정하 게되는 것이다. 컨텐츠의 순서화와 이동을 LMS 가 담당 함으로서 컨텐츠간의 독립성올 유지하여 컨텐츠의 재사용이 가능하게 되는 것이다.[3]

LMS 는 한 번에 한개의 SCO 률 런치시켜야 하 며 동시에 두 개 이상의 SCO 가 활성화 된 상태 로 있지 못한다. SCO 가 일단 런치 되면 SCO 는 LMS 의 클라이언트가 되는 인터넷 브라우져에서 플러그인으로 구현된 API Adapter를 찾고 통신 을 위해 API Adapter를 초기화 한다.

API Adapter

SCORM은 AICC의 CMI001 Guidelines for Interoperability에 정의된 실행환경을 기초로 한 다. API 는 LMS 와 SCO 간의 표준화된 통신 방법 을 제공하는데 SCO 의 입장에서 볼 때에 LMS 와 통신하기 위해 LMS가 어떻게 구현되어 있는지 전혀 알 필요가 없게된다. SCO 는 단지 표준화된 API를 구현한 API Adapter와 만 통신을 하면된 다. 따라서 컨텐츠 개발자는 LMS의 구현에 구애 받지 않고 컨텐츠의 내용에만 집중하여 훨씬 효 율적으로 컨텐츠를 개발 할 수 있올 뿐 아니라 재사용 가능한 컨텐츠를 개발할 수 있게 된다.

API Adapter가 구현해야 할 합수들은 세 영역으 로 나누어지는데, LMSInitialize(""), LMSFinish("") 을 포함하는 실행상태 함수들과 LMSGetLastError(), LMSGetErrorString (parameter), LMSGetDiagnostic(parameter) 등 에러 처리를 위한 상태관리 함수 그리고, LMSGetValue(data model element), LMSSetValue(data model element), LMSCommit("") 둥 데이타 전송 함수들이다.

이 API 함수들을 통하여 LMS와 컨텐츠가 통 신할 수 있기 위하여 몇가지 지켜야 할 사항들이 있다. 첫째는 API Adapter를 포합하는 API 합수 들은 SCORM 스펙에서 제시하는 정확한 함수 이름으로 구현되어 있어야 하며 둘째, API Adapter의 구현은 각 LMS에 따라 다를 수 있으 나 LMS는 SCO로 하여금 API Adapter를 찾을 수 있도록 하기 위해 DOM(Document Object Model) 원도우 내에 "API" 라는 이롬으로 API Adapter를 위치 시켜야 한다. 셋째, 최초 SCO가 Client 브라우져로 전달되었을 때 SCO 는 LMS 와 의 통신을 위해 API Adapter를 찾고 API Adapter를 초기화 해야 한다. 넷째, SCO 에서 API 함수들올 호출하는 것은 일반적으로 javascript률 통해서 이루어 진다.[2]

CMI Data Model

컨텐츠와 LMS잔의 데이타 전달에 있어 표준 화된 데이타 모델을 사용함으로서 톡정 컨텐츠가 LMS의 환경에 좌우되지 않고 컨텐츠 정보를 LMS와 교환할 수 있게 된다. API에서와 마찬가 지로 SCORM에서는 데이타 모델에 있어서도 AICC의 CMI Data Model을 따르고 있다. 따라서 현재 SCORM에서 사용하는 데이타 모델에서 모 든 요소들은 'cmi'라는 문자로 시작된다.

SCORM 은 데이타 모델을 필수요소와 선택요 소로 구분 하였다. SCO 의 입장에서 LMS에서 실 행되기 위한 최소한의 요구는 DOM 윈도우 내에 서 API를 찾고 LMSInitialize()와 LMSFinish() 두 함수만을 정상적으로 호출할 수 있으면 된다. LMSInitialize()와 LMSFinish()는 함수 인자 없 이 사용되는 합수이기 때문에 어떤 데이타 모델 도 사용하지 않고 LMS에서 실행될 수는 있는 것이다. 하지만 LMS에서는 데이타 모델 요소들

중 필수 요소에 혜당하는 것은 최소한 구현되어 있어야 한다.

데이타 모델 중 필수로 구현되어야 할 요소들은 다음과 같은 것들이다. cmi.core, cmi.core._studentid, cmi.corelesson_location, cmi.core.exit, cmi.core.credit, cmi.corelesson_status, cmi.core.score 이다.[2]

(그림 1) SCORM RTE 개넘도
이상의 SCROM RTE의 구성요소들 간의 실행 메카니즘울 보면 (그림 1)과 같다

2.2. iOneLMS의 기능 및 구성

OneLMS의 개발 환경 및 Platform

iOneLMS는 웹을 기반으로 하는 사이버 교육 운영시스템으로 인터넷/인트라넷올 통해 관리자, 교수자, 학습자 등 누구나 접근 가능하며 학습활 동과 함께 관리가 가능하다.
iOneLMS는 J2EE(Java 2 Enterprise Edition) 를 기반으로 개발되었다. J2EE는 기본적으로 J2SE 환경을 기반으로 대규모 기업환경의 서버 애플리케이션 개발에 적합한 API 라이브러리 및 서버 애플리케이션 요구사항 등을 정의하고 있는 데, J2EE의 핵심기술이라 할 수 있는 EJB 를 비 롯하여 iOneLMS에서 저ㄱㅛㅛㅇ된 J2EE 엔터프라이즈 API 들은 엔터프라이즈 자바빈즈(EJBs), JDBC, 서블릿/JSP, JNDI(Java Naming and Directory Interface) 등이다. iOneLMS는 J2EE 서버로서 $\mathrm{HP}-\mathrm{as}$ 를 채택하였고 HP-as는 리소스 풀링, 퍼 포먼스 등 J2EE 서버가 제공해 주는 시스템 레

벨의 서비스률 안정적으로 제공해 준다.
 및 구현 되었다. EJB 스펙에서는 EJB 아키텍처 를 '컴포넌트에 기반한 분산 비즈니스 애플리케 이션 개발과 실제 운용(Deployment)을 위한 컴포 넌트 아키텍처 '로 정의하고 있다. 즉 EJB 는 분 산 비즈니스 애플리케이션 작성시에 사용될 소프 트웨어 모듈(컴포넌트 모델)이며 동시에 EJB 자 체의 기능 구현과 실행환경에 배치되어 실행되는 속성 설정(Deployment Descriptor)을 분리함으로 써 특정 실행환경에 국한되지 않는 확장성 및 재 사용성을 갖는 빈을 개발할 수 있게 한다.[4]
iOneLMS가 이러한 확장성 및 재사용성을 갖 는 EJB 컴포넌트에 기반하여 개발됨으로서 SCORM 표준화에 순웅하는 LMS로 변환함에 있 어 새로운 기능에 해당하는 컴포넌트를 독립적으 로 개발 및 재사용하여 구현할 수 있었다.

iOneLMS의 기능

iOneLMS는 학습기능과 커뮤니티 형성기능, 테 스트 기능 및 평가기능을 보유함으로써 실제 교 실 수업에서 할 수 있는 모든 기능을 인터넷/인 트라넷상의 가상공간에서 실현 가능하게 구현하 였다. 또한 사용자의 권한에 따라 관리자, 강사, 학과 운영자, 학습자 네가지 모드를 지원하며 각 모드에 맞는 메뉴 체계에 따라 관리 및 강의와 학습이 쉽게 이루어지도록 구섬되어 있다.

2.3. LMS 표준화의 의미

LMS를 표준화 한다는 것은 모든 LMS 시스템 들이 같은 기술올 사용하고 동일한 기능, 동일한 인터페이스로 구현되어야 한다는 것올 의미하지 는 않는다. SCORM은 Run-Time Envrionment 스펙에서 LMS의 표준화에 대해 다룰 때 LMS의 모든 기능에 대해 표준화를 언급한 것이 아니라 단지 컨텐츠의 재사용과 상호운용성, 접근성, 지 속성 등의 SCORM 목표 달성을 위한 구현 방법 론 및 구현 예제 만을 제시하고 있다.
SCORM 은 LMS 측면에서 이러한 목표를 달성 하기 위한 핵심 개념을 컨텐츠와 LMS간의 일반 화된 방법에 의한 커뮤나케이션과 상호작용으로

보고 있다. 따라서 이를 제외한 기타 LMS가 갖 추어야 하는 기능과 사용자 인터페이스 및 구현 을 위한 적용 기술 등은 얼마든지 개별 LMS의 특징울 가지고 개발 될 수 있다.

따라서 표준화를 고려하지 않고 개발된 LMS 라 하더라도 SCORM RTE의 API와 데이타모델 을 추가로 개발하고 컨텐츠의 진수(launch)과정 울 조정하게 되년 SCORM 표준화에 상옹하는 LMS로의 변환이 가능하다는 개념적 졀론을 취 할 수 있게된다. 이러한 개념에 근거하여 iOneLMS의 변환을 시도하였고, 실제 구현에 있 어서도 같은 결론에 이를수 있었다.

본 논문에서 다루게 될 SCORM 표준화에로의 변환온 교수자에 의한 강의등록과 학습자의 강의 수강올 중심으로 이루어 지게 된다.

3. SCORM RTE 컴포넌트의 구현

SCORM RTE 컴포넌트의 구현은 다음과 같은 세 단계로 나누어 구분지을 수 있다. 첫째, 컨텐 츠 들여오기(Content Importing) 단계이다. 이는 zip 형태로 압축된 PIF(Package Interchange File) 파일의 기 제작된 SCORM 표준화 컨텐츠 를 LMS 또는 LCMS에로 가져오고 그것이 가지 는 컨텐츠 정보를 축출 및 저장하는 과정이다. 둘째, 강의동록 단계이다. 이는 개설된 특정 과 목에서 강좌로서 SCORM 컨텐츠를 등록하는 과 정을 말한다. 셋째, 강의 수강 및 학습 Data 수 집 과정이다. 학습이 이루어 지면서 발생하는 학 늡 데이타의 수집과 이것을 가눙하게 하는 LMS 와 컨텐츠 간의 상호작용이 여기에 해당된다. 그 외에도 수집된 학습 데이타의 할용 둥의 기능이 포함되어 있다.

이와같이 구현된 RTE 컴포넌트를 iOneLMS가 통합함으로서 SCORM 표준에 순웅하는 LMS로 의 기능을 갖출 수 있게 되었다.
3.1. 컨텐츠 들여오기

큘라이언트에서 서버로 컨텐츠 전송 및 언패키 징
(그림 2)에서와 같이 교수자는 iOneLMS의 학 습객채관리 메뉴를 통하여 컨텐츠 파일을 서버로 올릴 수 있다.

(그림 2) 컨텐츠 들여오기 화면
SCORM 스팩 중 Content Aggregation Model 에서는 컨텐츠의 패키징을 필수사항으로 두지는 않았으나 컨텐츠를 패키지화 할 것을 권하고 있 다. 이렇게 압축화일의 형태로 묶여진 컨텐츠 덩 어리률 PIF(Package Interchange File)파일이라 한다. 한 강좌률 이루는 컨텐츠 내에는 html, jpg , text 둥 여러 형태의 여러 가지 파일들이 포 함 될 수 있다. 이때 해당하는 모든 학습자료들 을 한나의 패키지 형태로 만들 경우 이동성이 쉬 워질 뿐 아니라 컨텐츠의 관리 역시 효과적으로 이루어질 수 있기 때문이다.[5]

클라이언트에서 서버로의 파일 업로드는 서블 릿(Servlet) 즉, java로 작성된 CGI 프로그램으로 구현되었다. 이를 위해 java package "com.jspsmart.upload"와 그 패키지 내에 SmartUpload.class를 비롯한 다섯 개의 java class를 생성하였다. 이 java class들은 java.lang.Object률 상속하였고, 아파치에서 제공 하는 class 라이브러리인 servlet.jar 내에 있는 javax.sevlet.http.*을 import하였다. 이맇게 작성 된 SmartUpload.class가 컨텐츠 들여오기 기능에 서 호출되는 JSP page에 importing되어 지정된 컨텐츠 파일을 업로드 하게된다. 업로드된 컨텐 츠 파일은 1 차적으로 서버의 임시 디롁토리 내에 저장되었다가 imsmanifest.xml을 파싱한 후 다시 서버상의 지정된 컨텐츠 리포지토리로 옮겨진

다.[6]
SCORM 컨텐츠 패키지 모델에서는 패키지화 된 컨텐츠의 모든 정보를 imsmanifest.xml 파일 에 포함하도록 하고 있으며 PIF 파일 내에서 imsmanifest.xml 파일올 루트 디렉토리 상에 위 치 하도록 하고 있다. 학습객체들의 상세 정보를 알아내기 위해 컨텐츠 패키지에서 imsmanifest.xml 파일올 찾고 패키지 파일 외부 로 축출하기 위해 zip 형태의 파일 포맷에서 특 정 파일을 찾고 풀수 있도록 하는 java.util.zip.* 을 import한 PackageHandler.class를 생성하여 사용한다.

컨텐츠정보 파일(imsmanifest.xml) 파싱

imsmanifest.xml에 대한 접른이 가능하게 된 후에는 PIF가 포함하는 학늡객체들의 정보를 LMS가 활용할 수 있도록 하기 위해 데이타베이 스에 저장하는 과정이 필요한데 이에 앞서 정보 축출올 위해 파서를 이용하여 imsmanifest.xml 파일을 파싱한다.

ADL 은 imsmanifest.xml의 작성을 위해 자체에 서 정의한 XML 스키마인 adl_cp_rootvlpl.xsd을 제시할 뿐 아니라 메니페스트 파일을 파싱할 수 있는 class가 포함된 라이브러리로 ADLParser.jar을 제공하고 있으며, 본 연구에서 는 메니페스트 파일의 파싱을 위해 ADLParser.jar가 포함하는 class들올 포함하고 기타 여러 class들을 import하여 ManifestHandler.class률 생성하여 사용하였다.

ManifestHandler.class는 ADLParser.jar 내의 CPDOMParser class를 상속하였고, CPDOMParser는 ADLDOMParser를 상속하였는 데 이들 두 클래스률 포함한 org.adl.parsers.dom 패키지는 org.apache.xerces.parsers 패키지 내의 DOMParser 큘래스를 상속하여 구현되었다. 즉, iOneLMS의 ManifestHandler.class는 아파치 (Apache)에서 제공하는 라이브러리인 xerces.jar 의 DOMParser 및 XMLParser Class률 상속하여 만들어 졌다고 할 수 있다. 이들 클래스들이 org.w3c.dom과 org.xml.sac 패키지률 포함하고 있기 때문에 파싱이 완료된 imsmanifest.xml을 W3C DOM의 Document object로 접근할 수 있

게 된다.

```
try {
    // Parse the file
    parse( sourceToParse );
    document = getDocument();
}
```

(그립 3) ManifestHandler.class (parse)
(그림 3)에서와 같이 CPDOMParser 클래스에 서 상속받은 parse() 메소드로 메니패스트 파일 을 파싱하고 getDocument() 메소드를 통해 W3C DOM의 Document 인터페이스률 흭득하게 된다.

```
Node contentNode = document.getDocumentElement();
NodeList contentChildren = contentNode.getChildNodes();
this.manifest.fillManitest( contentNode);
for(int i = 0; i < contentChildren.getLength(); i++ ) {
    Node currentNode = contentChildren.item(i);
}
```

(그립 4) ManifestHandler.class (DOM)
Document 인터페이스는 또한 W3C Node 오브젝 트를 상속받아 구현되었기 때문에 (그림 4)에서 보는 바와 같이 메니페스트 파일 내의 각 아이튐 들을 노드로 접근할 수 있게 된다. 최종적으로 컨텐츠 정보들은 java.util.Vetor 타입으로 리턴된 다.

학습객체정보 관리 및 순서화 파일 생성

메니페스트 파일이 가지는 xml 테그 중 <Organizations> 아이템은 컨텐츠의 구조를 나 타내며, <Resources> 아이템은 SCO, Asset 둥 학습객체에 대한 정보를 가진다. <Resources> 테그 및 그 하위 테그가 가지는 컨텐츠 및 컨텐 츠가 포합하는 SCO 들에 대한 상세 정보를 LMS 가 쉽게 접근하고 활용할 수 있도록 데이타베이 스에 저장하고 관리하기 위하여 데이타베이스에 관련 테이블을 추가한다.

컨텐츠 전체에 대한 정보 즉, PIF 파일 자체에 대한 정보를 위하여 COURSEINFO 테이블을 생 성하였고, 개개의 SCO 또는 Asset에 대한 정보 의 관리를 위하여 ITEMINFO 테이블을 생성하

였다. COURSEINFO 테이불은 코스 아이디, 코 스 제목, 코스 네비게이션 방식 및 활성화 유무 등의 펼드를 가지고, ITEMINFO 테이블에서 관 리하는 정보는 아이템 제목, 컨텐츠 리포지토리 상에서 실제 위치를 나타내는 URI, 컨텐츠 타입, 요구되는 선행학습 등에 대한 정보이다.

COURSEINFO 테이블과 ITEMINFO 테이블에 대한 데이타 관리를 위하여 이들과 매칭되는 ECourseinfo EJB 엔티티빈과 EIteminfo EJB 엔 티티빈을 생성하여 디플로이 하였고, 학습객체정 보 관리에 있어서의 비즈니스 로직과 트랜젝션 처리를 위해 SScormImportTx, SIteminfoTx 둥 두 개의 EJB 세션빈을 작성하였다.

ManifestHandler.class로부터 Vector 타입으로 컨텐츠 정보률 받은 JSP 페이지가 컨텐츠 정보 를 데이타 베이스에 저장하기 워한 EJB 클라이 언트 MScormimport.class의 ScormImport() 메소 드를 호출하고 MScormImport.class는 엔티티빈 의 DAO(Data Access Object) 객체률 생성하여 세션빈의 홈 인터페이스를 찾은다음 리모트 인터 페이스를 퐁하여 적절한 세션빈의 메서드롤 호출 하게 된다. 다시 세션빈은 관련 엔티티빈의 객체 롤 생성하고 최종적으로 홈 인터페이스의 create() 메소드를 호출함으로 데이타베이스에 컨 텐츠 정보 및 SCO 정보들을 생성한다.

(그림 5) 컨텐츠 들여오기 컴포넌트 구성도
이상의 컨텐츠 들여오기 단계에서 구현된 컴포 넌트 구성도를 보면 (그림 5)와 같다.

3.2. 강의 등록

강의 등록이란 개설된 과목에 강좌를 추가하는 과정을 말한다. 강의 둥록은 첫째는 등록할 강좌 를 LMS 로 들여오는 동시에 단 하나의 지정한 과목의 강좌로 둥록하는 것과 둘째, 강의 들여오 기 과정을 통해 컨텐츠 리포지토리에 저장된 학 습 컨텐츠를 조회하여 지정한 과목의 강좌로 둥 록하는 것이다. 이렇게 컨텐츠 리포지토리 내의 강좌를 과목에 둥록할 경우는 과목 수에 상관 없 이 하나의 컨텐츠를 복수개의 과목에 등록할 수 있을뿐 아니라 강좌의 내용 구성 변경이 용이해 진다.

표준화로 변환하기 전의 iOneLMS는 첫 번째 방식의 강의 등록만 가능하였으나 SCORM 표준 으로 변환하면서 컨텐츠 재사용의 기회를 높이기 위해 두 번째 방식 즉, 강의 들여오기와 강좌 등 록 기능을 분리하여 구현하였다. 이렇게 함오로 써 최소한의 기능을 갖춘 컨텐츠 리포지토리를 추가로 구현할 수 있게되었다.

변환 전의 iOneLMS는 데이타베이스 LECTURES 테이블을 중심으로 강좌정보를 관리 하고 있었다. 따라서 컨텐츠 리포지토리가 보유 하고 있는 컨텐츠를 강좌로 둥록하고 학습으로까 지 이어지도록 하기 위해서 리포지포리의 컨텐츠 아이디를 LECTURES 테이블에서 외부키로 필드 에 포함하였다. 이렇게 함으로써 기존의 데이타 베이스 및 프로세스의 변경올 최소화할 수 있었 다.

리포지토리에 저장된 컨텐츠률 강좌로 등록하 기에 앞서 리포지토리 조혀 및 컨텐츠 상세 조희 기능을 제공한다. 리포지토리가 보유하고 있는 컨텐츠를 조회하기 위하여 이미 작성된 ECourseinfo EJB 엔티티빈과 EIteminfo EJB 엔 티티빈올 사용하며 SScormImport, SIteminfo 두 개의 비즈니스 로직을 구현한 EJB 세션빈을 작 성하였다. EJB 클라이언트로서 MViweScormInfo class는 해담 비즈니스 로직을 가지는 세션빈을 호출하고 세션빈은 엔티티 빈으로부터 클라이언 트가 요청하는 컨텐츠 정보를 ResultSet으로 반 환해 준다.

3.3. 강의 수강 및 학습 Data 수집

강의수강은 과목에서 강좌로 둥록된 SCORM Contens롤 학습자가 오픈하고 학습하는 일련의 과정 가운뗴 발생하는 모든 활동들을 포함한다.

컨텐츠의 실행 및 초기화

일반적으로 LMS는 html을 통한 학습 및 툭정 형태의 컨텐츠를 실행하기 위해 자체의 학습용 Player나 플러그인 프로그램을 사융한다. 그러나 표준화된 LMS와 컨텐츠를 통한 학습이 이루어 지기 위해서는 단순히 html을 불러오거나 플러그 인 프로그럼을 실행하는 젓 만으로는 되지 않는 다. 선행연구에서 살펴 보았둣이 컨텐츠와 LMS 간의 커뮤니케이션을 위해 클라이언트와 서버촉 에서 동시에 프로그램이 초기화 되어야 한다.

클라이언트에 컨텐츠가 로드되면 컨텐츠는

```
<object classid ="clsid:8AD9C840-044E-11D1-B3E9-00805F499093"
    width ="0" height="0" id="APIAdapter"
    codebase ="http://java.sun.com/products/plugin/1.3/jinstall-13-win32.cab#Version=1,3,0,0">
    <param name = "code" value = "org/adl/samplerte/client/APIAdapterApplet.class" >
    <param name = "codebase" value = "/student/scormlect" >
    <param name = "type" value="application/x-java-applet;version=1.3">
    <param name = "mayscript" value="true" >
    <param name = "scriptable" value="true" >
    <param name = "archive" value = "cmidatamodel.jar,imsclient.jar.debug.jar" >
</object>
```

(그림 6) API Adapter 객체 선언

API Adapte를 찾는데 컨텐츠에 포함된 자바스크 립트가 이 역할올 하게 된다. 어떠한 컨텐츠라도 이 API Adapter를 찾올 수 있도록 하기 위해 SCORM은 브라우져 상의 API Adapter를 "API"라는 이름올 가지는 DOM 객체로 접근 하 도록 하였으며 아래와 같은 코드로 구현 가능하 다

API $=$ this.document.APIAdapter;

컨텐츠에 포함된 자바 스크립트는 DOM 객체 로 선언된 API를 아래의 코드와 같음 함수를 사 용하여 찾은 다음 API Adapter의 몌서드인 LMSInitialize("")를 호출함으로써 통신을 초기화 할 수 있다

```
var api = getAPIHandle();
var result = api.LMSInitialize("");
```

iOneLMS는 SCORM 컨텐츠의 실행올 위해 세 개의 프레임을 가지는 하나의 윈도우를 제공한 다. 상위 프레임에는 (그림 6)과 같이 <applet> 또는 <object> 테그롤 사용하여 API Adapter Applet을 포함하고, 메니패스트 파일의 Organization Item에 기록된 순서에 의하여 학습 흐름을 제어할 수 있도록 사용자 인터페이스률

(그림 7) 강의수강
제공한다. 아래 왼쪽 프레임에는 Organization Item에 기록된 순서화에 무관하게 학습자 인의로 네비게이션이 가능하도록 컨텐츠의 트리구조률

보여준다. 마지막으로 아래 오른쪽 프레임에는 jsp 로 작성된 네비게이션 엔진과 함께 학습할 학 습객체를 디스플레이 하도록 하였다. (그림 7)은 iOneLMS에서 강의수강 화면을 보여준다.

학습자가 컨텐츠에 대한 학습을 처음 시작하는 시점에 iOneLMS는 컨텐츠에 대한 학습자의 학 습상황을 트래킹하기 위한 초기 정보를 데이타베 이스 테이블 USERCOURSEINFO와 USERSCOINFO 에 기록한다. USERCOURSEINFO 테이블은 학 습자가 수강중인 코스 리스트률 관리하고, USERSCOINFO는 코스내에 포합된 개개의 SCO 에 대한 학습진도율, 시험점수 등 학습 상태를 관리한다. 이상의 두 DB 테이블은 SCORM으로 의 변환을 위해 새롭게 추가 생성된 것으로 각 테이블에 대한 EJB 엔티티빈을 생성하고 학습상 태 정보 관리를 위한 비즈니스 로직을 담은 세션 빈을 생성하여 정보조회 및 추가가 가능하게 하 였다.

또한 학습이 진행되는 동안 LMS와 컨텐츠가 통신하는 과정에서 CMI 데이타 모델을 통하여 표준화된 통신이 가능하게 하기 위하여 코스내에 포합되는 SCO 에 대한 CMI 데이타 모델 오브젝 트 파일을 생성하였다. 생성된 CMI 데이타 모델 오브젝트 파일은 SCORM 스폑에서 제시하는 모 든 아이템들을 포합하고 있으며, SCO 가 런치된 후 API Adapter의 LMSInitialize() 메서드가 호 출되는 시점에 LMSCMIServiet.class 서블릿을 퉁하여 서버에서 읽혀진 후 다시 클라이언트의 APIAdapter 에플릿에 오브젝트로 기록되어 클라 이언트에서 접근이 가능하게 된다.

학습의 흐륨 및 학습객체간 이동

컨텐츠가 LMS에 의해 런치되고 API가 초기화 되고나면 학습자의 학습 진도 및 SCO 간의 이동 은 학습자 자신에 의해 컨트롤될 수 있을뿐 아니 라 LMS에 의해서 컨트롤될 수도 있다.
iOneLMS 는 컨텐츠 팩키지 내의 메니패스트 파일이 제공하는 컨텐츠 정보를 기반으로 순차적 인 학습흐름을 제공할 뿐 아니라 SCO들에 대한 계층적 구조를 학습자에게 제시하여 주고 학습자 로 하여금 자유륩게 SCO 들 간의 이동이 가능할 수 있도록 하였다.

현재 런치된 SCO 에 대한 학습이 완료되면 컨 텐츠는 학습 결과를 LMS 서버에 알리고 LMS는 이 정보에 근거하여 적당한 다른 SCO 률 런치시 킴으로서 LMS 주도의 학습흐름의 제어가 가능 하나 LMS에 의한 학습객체간의 이둥이 이루어 지기 위해서는 컨텐츠 역시 저작시 이것울 고려 하여 저작되어야 하며 그맇지 못할 경우는 오히 려 학습의 흐름 제어가 불가능하여 학습 자체가 어려워질 수 있음으로 주의 하여야 한다.

학습 정보 수집

SCO 가 런치되면 API 함수 중 LMSInitialize() 함수를 호출하는데 이때 API Adapter는 서버의 서블릿으로부터 CMI 데이타 객체를 전달받아 생 성한다.

학슙이 진행되는 동안 컨텐츠는 컨텐츠 내에 포함된 javascript를 톰하여 API Adapter의 LMSSetValue() 또는 LMSGetValue() 함수를 호 출하면서 CMI 데이타 객체에게 정보를 요청하거 나 기록한다. LMSFinish() 또는 LMSCommit() 둥의 API 함수가 호출될 때 API Adapter는 현재 까지의 학습상태를 보유하고 있는 CMI 데이타 오브젝트률 ObjectOutputStream으로 서버의 서블 릿에게로 전달하고 서블릿은 ObjectInputStream으 로 받아 오브젝트 파일로 기록함과 동시에 데이타 베이스에 저장한다. LMS 서버와 클라이언트가 상 호간에 Object Input/Output Stream욜 퉁하여 학 습상태정보를 교환하게 함으로서 서버의 보안을 강화하고 성능의 향상을 기하도록 하였다.

학습 정보는 데이타베이스의 USERCOURSEINFO 테이블에 SCO 단위로 기록된다. LMSCMIServlet 서블릿은 데이타베이스와의 트랜잭션을 위하여 MUpdateScoinfo 클라이언트 빈을 통하여 EJB 세션빈에 접근한다.

CMI 데이타 모델은 ADL 에서 제공하는 org.adl.datamodels 팩키지 내의 모든 클래스를 그대로 재사용하여 구헌 가능하다

3.4 학습 데이타의 할용

하나의 코스에 대해 학습이 진행되면서 LMS 에 의해 추적되는 학습정보는 SCO 단위의 학습

정보이다. 따라서 많은 SCO 둘을 포함하는 코스 들에서는 많은 양의 학습 데이타 수집이 이루어 질 수 있다. 또한 개별 SCO 들에 대한 학습정보 수집의 주쳬는 LMS가 아니라 컨텐츠이다. 현재 의 SCORM 스폑에서는 LMS와 컨텐츠간의 통신 의 시작은 컨텐츠가 먼저 하도록 되어 있기 때문 이다. SCORM 버전 1.2 에서는 LMS가 컨텐츠에 먼저 데이타를 요청하는 메카니즘은 없다. 따라 서 컨텐츠에서 LMS로 정보를 주지 않으면 LMS 는 학습정보를 가질 수 없게 된다.

(그립 8) 학습진행정보 보기
iOneLMS는 이러한 학습 데이타의 수집이 컨 텐츠에 의존적인 것을 고려하여 (그림 8)에서와 같이 SCO 단워의 학습상태를 나타내는 "cmi.core.lesson_status" 정보률 제공하도록 하였 다.

4. 길른 홏 햐ㅇㅜㅜ 연구

Java의 객체지향 튝성 뿐 아니라 J2EE의 분산 컴포넌트 기술에 기반하여 API Adapter, 데이타 모델, 데이타 관리 등의 SCORM 표준화 핵심 기 능들올 EJB와 java 서블릿, java 애퓰릿 및 JSP 기술들을 사용하여 컴포넌트로 개발하였다. 이 과정에서 ADL 에서 제공되는 CMI 데이타 모델, DOM Parser 등의 라이브러릴ㄹㄹ 충분히 활용하 였다. 개발된 컴포넌트를 iOneLMS에 적용하는 과정에서 표준화 컨텐츠 및 학습진행 상태 관리 률 위해 데이타베이스에서 관리해야할 데이터의 많은 부분을 기존의 데이타볘이스 정보와는 관련

성을 쥴이고 독립성을 높여 구현할 수 있었다.
본 논문에서 구현한 SCORM에 순웅하는 LMS 는 SCORM 표준화 컨텐츠의 효과적인 관리방안 에 대해서는 충분한 연구가 이루어지지 못했다. 본 연구에서는 컨텐츠를 체계적인 분류에 의해 관리하지 돗했으나 SCORM 컨텐츠를 저장하는 컨텐츠 리포지토리에서 컨톈츠가 담고있는 학습 내용, 학습 대상자, 컨텐츠의 난위도 둥에 따른 체계적인 컨텐츠 관리에 대한 연구가 필요할 것 으로 보여진다.

또한 컨텐츠와 LMS 의 통신율 퉁해 컨텐츠로 부터 받아들이는 학습상태 정보의 할용적인 측면 에서 코스 네비게이션, 추가 학습정보 제공 둥에 대한 더 많은 연구가 이루어질 것을 기대한다. ADL에서 2002년 11월 27일에 'ADL SCORM Version 1.3 Application Profile' Working Draft Version을 발표하여 IMS Simple Sequencing Specification에 기초한 Sequencing과 코스 네비 게이션올 적용하기 위한 공개 테스트가 이루어 지도록 하였다.[7] SCORM Version 1.3 의 발표에 따라 Sequencing과 네비게이션에 대한 더 깊은 연구가 이루어 질 것으로 기대한다.

참 고 문 헌

[1] 이준, LCMS(Learning Content Management System) 기반의 e-Learning 개발과 적용, 한국교육학술정 보원, 2002
[2] ADL Sharable Content Object Reference Model version 12 ame hup//wwwadintarg/ADLDOCS/ Documents/SCORM_1.2_RunTimeEnv.pdf, 2001
[3] 김용만.김현철, SCORM 스펙을 이용한 학습 관리 시스템 설계. 한국컴퓨터교육학희 하계 학술발표논문집 제6권제2호, 173-174, 2002
[4] Sun Microsystems. Enterprise JavaBeans(TM) Specification Proposed Final Draft 2.1, http://java.sun.com/products/ejb/docs.html \#specs, 2002
[5] ADL, Sharable Content Object Reference Model version 1.2, http://www.adlnet.org/ ADLDOCS/Documents/SCORM_1.2_CAM.pd f, 2001
[6] ADL, ADL Sample Run-time Environment version 1.2.1, http///www.adinet.org/ADLDOCS/ OtherSCORM(TM)Versionl_2SampleRTEVe rsionl_2_1.zip, 2002
[7] ADL, ADL SCORM Version 1.3 Application Frofile Working Draft 0.9, http//www.adlnet.org, 2002

깁 기 벽

1984 서울대학교 전자계산기공학과 (공학사)
 1987 서울대학교 컴퓨터공학과 (공학석사) 1992 서올대학교 컴퓨터공학과

 (공학박사)1994 1998 삼성 SDS 정보기술연구소 책임연구원 2000~현재 한동대학교 전산전자공학부 교수
관심분야: Adaptive Education, e-learning 표준화 멀티미디어교육
E-Mail: peterkim@handong.edu

김 강 벅

1997 계명대학교
경영정보학과(학사)
2001 - 현재 한동대학교
정보통신학과 석사과정

관심분야: 가상교육, e -learning 표준화 E-Mail: jdpeter@hanmail.net

[^0]: + 준 희 원: 한동대한교 정보붕신학과 석사과정
 ++ 총신히원: 한둔대학교 전산전자공학부 교수
 혼문 접수: 2002년 12월 30일, 심사완료: 2003년 1월 18일
 * 본 논문은 2002년 산학협동재단의 학술연구비 지원으로 수행된 연구 과제임

