Development of multiplex polymerase chain reaction for the detection of vancomycin resistant genotypes and Enterococcus Sp.-specific genes

장구균의 vancomycin 내성 유전자와 종 특이유전자의 검출을 위한 Multiplex polymerase chain reaction 개발

  • Cho, Yun-Sang (National Veterinary Research and Quarantine Service) ;
  • Lee, Hee-Soo (National Veterinary Research and Quarantine Service) ;
  • Kim, Jong-Man (National Veterinary Research and Quarantine Service) ;
  • Ahn, Jong-Sam (National Veterinary Research and Quarantine Service) ;
  • Ryu, Pan-Dong (College of Veterinary Medicine, Seoul National University) ;
  • Park, Yong-Ho (College of Veterinary Medicine, Seoul National University) ;
  • Yoo, Han-Sang (College of Veterinary Medicine, Seoul National University) ;
  • Lee, Mun-Han (College of Veterinary Medicine, Seoul National University)
  • Accepted : 2003.02.28
  • Published : 2003.03.31

Abstract

A multiplex PCR assay, which allows simultaneous detection of vancomycin resistant genotypes and Enterococcus species-specific genes, was developed. Vancomycin resistant enterococci (VRE) from chickens and humans could be detected for vanA, vanB, vanC-1, vanC-2, $ddl_{E.faecium}$ and $ddl_{E.faecalis}$ by multiplex PCR. Eight isolates of VRE from humans (n=11) had $ddl_{E.faecium}$ and vanA, and 3 isolates of the VRE had $ddl_{E.faecium}$ and vanB. One isolate of VRE from chickens (n=6) had $ddl_{E.faecium}$ and vanA, and 5 isolates of the VRE had only vanA. E. faecium, E. faecalis, E. gallinarum and E. casseliflavus were also confirmed for the species-specific gene by multiplex PCR. This multiplex PCR could detect E. faecium, E. faecalis, E. gallinarum, E. casseliflavus, vanA, vanB, vanC-1 and vanC-2, simultaneously. The PCR assay established in the present study can be an alternative to time-consuming biochemical tests and antibiotic susceptibility tests of Enterococcus spp.

Keywords

References

  1. van Caeseele P, Giercke S, Wylie J, et al. Identification of the first vancomycin-resistant Enterococcus faecalis harbouring vanE in Canada. Can Commun Dis ReP, 27:101~104, 2001
  2. Leclercq R, Dutka-Malen S, Duval J, et al. Vancomycin resistance gene vanC is specific to Enterococcus galIinarum. Antimicrob Agents Chemother, 36:2005~2008, 1992
  3. Navarro F, Courvalin P. Analysis of genes encoding D-alanine-D-alanine ligase-related enzymes in En-terococcus casselifIavus and Enterococcus fIavescens. Antimicrob Agents Chemother, 38:1788~1793, 1994
  4. Toye B, Shymanski J, Bobrowska M, et aI. Clinical and epidemiologic significance of enterococci intrinsically resistant to vancomycin (Possessing the vanC genotype). J Clim MicrobioI, 35:3166~3170, 1997
  5. Bell JM, Paton JC, Turnidge J. Emergence of van-comycin-resistant enterococci in Australia: phenotypic and genotypic characteristics of isolates. J Clin MicrobioI, 36:2187~2190, 1998
  6. Liassine N, Frei R, Jan I, et al. Characterization of glycopeptide-resistant enterococci from a Swiss hospital. J Clin Microbiol, 36:1853~1858, 1998
  7. Courvalin P. Genotypic approach to the study of bacterial resistance to antibiotics. Antimicrob Agents Chemother, 35:1019~1023, 1991
  8. Frankel G, Giron JA, Valmossoi J, et al. Multi-gene amplification: simultaneous detection of three virulence genes in diarrhoeal stool. Mol Microbiol, 31:1729~1734, 1989
  9. Oyofo BA, Thornton SA, Burr DH, et al. Specific detection of Campylobacter jejuni and CampyIobacter coli by using pdymerase chain reaction. J Clin MicrobioI, 30:2613~2619, 1992
  10. Eyers M, Chapelle S, Van Camp G, et al. Discri-mination among thermophilic CampyIobacter species by polymerase chain reaction amplification of 23S gene fragments. J Clin Microbiol, 31:3340~3343, 1993
  11. Predari SC, Ligozzi M, Fontana R. Genotypic identi-fication of methicillin-resistant coagulase-negative sta-phylococci by polymerase chain reaction. Antimicrob Agents Chemother, 35:2568~2573, 1991
  12. Reed RP, Sinickas VG, Lewis C, et al. A comparison of polymerase chain reaction and phenotyping far rapid speciation of enterococci and detection of vancomycin resistance. Pathology, 31:127~132, 1999
  13. Patel R, Uhl JR, Kohner P, et al. Multiplex PCR detection of vanA, vanB, vanC-l, and vanC-2/3 genes in enterococci. J Clin Microbiol, 35:703~707, 1997
  14. Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol, 33:24~27, 1995 (Erratum, 33:1434)
  15. Satake S, Clark N, Rimland D, et al. Detection of vancomycin resistant enterococci in fecal samples by PCR. J Clin Microbiol, 35:2325~2330, 1997
  16. Petrich AK, Luinstra KE, Groves D, et al. Direct detection of vanA and vanB genes in clinical specimens for rapid identification of vancomycin resistant entero-cocci (VRE) using multiplex PCR. MoI CeIl Prob, 13:275~281, 1999
  17. Kariyama R, Mitsuhata R, Chow JW, et al. Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci. J Clin Microbiol, 38:3092~3095, 2000
  18. van de Klundert JAM, Vliegenthart JS. PCR detection of genes coding for aminoglycoside-modifying enzymes. In Persing DH, Smith TF, Tenover FC, et al, eds Diganostic molecular microbiology, American Society for Microbiology, Washington, D.C.:547~552, 1993
  19. Clark NC, Cooksey RC, Hill BC, et al. Chamcterization of glycopeptide-resistant enterococci from U.S. hospitals. Antimicrob Agents Chemother, 37:2311~2317, 1993
  20. 홍원표, 김민, 송정원 등. Vancomycin 내성 Entero-coccus faecium에 대한 plasmid DNA 및 random amplified polymophic DNA 분석. 대한임상병리학회지, 18:379~385, 1998
  21. Seo KS, Song DJ, Gwyther MM, et al. Development of multiplex PCR for detection of vancomycin resistant enteracocci (VRE) and epidemiological application in Korea. Korean J Vet Res. 39:343~352, 1999
  22. Klare I, Heier H, Claus H, et al. vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol Lett, 125:165~172, 1995
  23. Fraimow H, Jungking D, Lander D, et al. Urinary tract infection with an Enterococcus faecaIis isolate that requires vancomycin for growth. Ann Intern Med, 121:22~26, 1994
  24. Perichon B, Reynolds P, Courvalin P. VanD-type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob Agents Chemother, 41:2016~2018, 1997
  25. Clark N, Teixeira L, Facklam R, et al. Detection and differentiation of vanCl, wnC2 and vwC3 glycopeptide resislance genes in enterococci. J Clin MicrobioI, 36:2294~2297, 1998
  26. Fines M, Perichon B, Reynolds P, et al. VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother, 43: 2161~2164, 1999
  27. Lemcke R, Bulte M. Occurrence of the vancomycin-resistant genes vanA, vanB, vanCl, vanC2 and vanC3 in Enterococcus strains isolated from poultry and pork, Int J Food Micrbiol, 60:185~194, 2000
  28. Hayden MK, Trenholme GM, Schultz JE, et al. In vivo development of teicoplanin resistance in a VanB En-terococcus faecium isolate. J Infect Dis, 167:1224~1227, 1993
  29. Sahm DF, Fiee L, Handwerger S. Inducible and con-stututive expression of vanC-l-encoded resistance to vancomycin in Enterococcus gallinarum. Antimicrob Agents Chemother, 39:1480~1484, 1995
  30. Dutka-Malen S, Molinas C, Arthur M, et al. The VANA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes. MoI Gen Genet, 224:364~372, 1990
  31. Dutka-Malen S, Molinas C, Arthur M, et al. Sequence of the vanC gene of Enterococcus gallinarum BM4174 encoding a D-alanine:D-alanine ligase-related protein necessary for vancomycin resistance. Gene, 112:53~58, 1992
  32. Evers S, Sahm DF, Courvalin P. The vanB gene of vancomycin-resistant Enterococcus faecalis V583 is structurally related to genes encoding D-A1a:D-A1a ligases and glycopeptide-resistance proteins VanA and VanC. Gene, 124:143~144, 1993
  33. Evers S, Reynolds PE, Courvalm P. Sequence of the vanB and ddI genes encoding D-a1anine:D-1actate and D-alanine:D-alanine ligases in vancomycin-resisfant En-terococcus faecalis V583. Gene, 140:97~102, 1994
  34. Cheng S, Fockler C, Bames WM, et al. Effective am-plification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci, 91:5695-5699, 1994
  35. Varadaraj K, Skinner DM. Denaturants or cosolvents improve the specificity of PCR amplification of a G+C-rich DNA using genetically engineered DNA polymerases. Gene, 140:1-5, 1994
  36. Baskaran N, Kandpal RP, Bhargava AV, et al. Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Methods, 6:633-638, 1996
  37. Sahm DF, Free L, Smith C, et al. Rapid Charac-terization schames for surveillance isolates of vancomycin-resistant enterococci. J Clin Microbiol, 35:2026-2030, 1997
  38. Grosso MD, Caprioli A, Chinzari P, et al. Detection and characterization of vancomycin-resistant enterococci in farm animals and raw meat products in Italy. Microb Drug Resist, 6:313-318, 2000
  39. Dahl KH. Lundblad EW, Rokenes TP, et al. Genetic lineage of the vanB2 gene cluster to Tn5382 in vancomycin-resistant enterococci and characterization of two novel insertion sequences. Microbiol, 146:1469-1479, 2000
  40. Casadewall B, Courvalin P. Characterization of the vanD glycopeptide resistance gene cluster from Entero-coccus faecium BM4339. J Bacteriol, 181:3644-3648, 1999
  41. Ostrowsky BE, Clark NC, Thauvin-Eliopoulos C, et al. A cluster of vanD vancomycin-resistant Enterococcus faecium: Molecular characterization and clinical epide-miology. J Infect Dis, 180:1177-1185, 1999
  42. Boyd DA, Conly J, Dedier H, et al. Molecular Charac-teiizaticn of the vanD gene cluster and a novel insertion element in a vancomycin-resistant Enterococcus isolated in Canada. J Clin Microb, 38:2392-2394, 2000