비행 중 회항 시도 항공기의 비행자료 분석
 신대원*, 이경철*, 이종희*, 송병흠**

 The analysis of flight data of aircraft with carry

 The analysis of flight data of aircraft with carry diversion into execution in-flight

 diversion into execution in-flight}

D. W. Shin ${ }^{*}$, K. C. Lee*, J. H. Lee ${ }^{*}$, B. H. Song ${ }^{* *}$

	목 차	
I.	서	
II. 론	SSFDR 비행자료기록장치	
III.	비행자료 해독	
IV.	비행자료	분석
V.	회항관련규정 및 비행행 위분식	
VI.	결	론

Abstract

This study is performed to secure the safety of civil aviation by establishing systematic analysis ability of Flight Data Recorder. Through this study, downloading SSFDR(Solid State Flight Data Recorder) to personal computer, editing interface file, flight data numerical analysis and regulations relayed to the aircraft with carry diversion into execution are performed. In the analysis, the flight data of B747-400 model aircraft between Jeju(RKPC) and Gimpo(RKSS) was selected.

Key Words : FDR, SSFDR, Parameter, B747-400, Diversion

[^0]
I. 서 론

FDR(Flight Data Recorder)은 항공기사고의 원인을 규명하기 위하여 항공기 조작 및 상태 등 의 Parameter들을 기록하는 장치로서, 기록된 비행자료 분석을 통하여 운항 당시의 항공기 상황 을 진단 또는 평가할 수 있다. 항공선진국들은 FDR관련기술을 바탕으로 항행안전 확보를 위하 여 통합적인 항행안전 시스템 구축에 지속적인 노력을 기울이고 있다.

본 연구는 우리나라의 FDR해독 및 분석기술을 발전시키고, 항공기 항행의 안전성과 신뢰성을 확보할 수 있는 방안으로 활용하고자 함이며, 이 논문에서는 제주공항을 이륙하여 목적지 공항 인 김포로 비행하던 중 회항으로 보이는 비행이 있은 후 다시 최초목적지 공항으로 향한 B747-400항공기 비행자료 및 관련규정을 통하여 분석하였다.

II. SSFDR 비행자료기록장치

일반적으로 제 3세대 비행자료기록장치인 SSFDR(Solid State Flight Data Recorder)의 비행자 로 기록시간은 $\mathrm{DFDR} / \mathrm{UFDR}$ (제 2세대 비행자료기록장치) 과 동일한 25 시간용과 2 배의 기록시간을 갖는 50 시간용이 있으며, 연구에서 사용된 Allied Signal사 SSFDR은 50시간용의 SSFDR이다. SSFDR 은 컴퓨터 메모리 기억장치를 이용함으로써 기존(제 1 세대 및 제 2 세대)의 비행자료기록장 치 방식에 비하여 기록용량이 증가되었고, 화염으로부터 보존율도 증대되었으며, 기록된 비행자 료에 대한 신뢰도도 향상되었다. 그러나 SSFDR 은 테이프형식(DFDR/UFDR)의 단점으로 대두된 기계적 고장은 발생하지 않으나, Solid State가 충격에 약한 단점이 있으며, 이를 보완하기 위하 여 SSFDR에는 충격으로부터 Solid State를 보호하기 위한 보호캡슐(CSMU: Crash Survival Memory Unit)을 설치하였다. SSFDR은 작동전원을 받는 Power Supply, CSMU, 항공기가 수중 에 추락한 경우를 대비하여 수심 $20,000 \mathrm{ft}$ 에서 30 일간 방치되어도 훼손이 없도록 되어 있으며, 또 한 수중위치를 자동적으로 알리는 ULB(Underwater Location Beacon)및 항공기의 DFDAU(Digital Flight Data Acquisition Unit)로부터 비행자료를 받는 Aircraft Interface 단자로 외부가 구성되어있다<그림 1>.

<그림 $1>S S F D R$ 의 외형

III. 비헹자료 해독

1. Readout

SSFDR 해독은 SSFDR 제작회사 마다 해독방법에 차이가 있다. 본 연구에 사용된 SSFDR해 독은 한국항공우주연구원 품질인증센터에서 보유한 MAGS(Maintenance and Analysis Ground Station)해독시스템으로부터 항공기와 동일한 조건의 전원 $(115 \mathrm{~V} A C)$ 을 비행자로기록장치에 안정 적으로 공급하는 역할을 하는 Power Converter장비를 활용하였으며, SSFDR에 기록된 비행자료 는 PC에 ‘422 Fast Com' Board의 port를 통하여 1999년 3월 11일 비행자료를 Readout(또는 Download)을 받았다. SSFDR에 기록된 전체비행자료의 Readout시간은 17 분이 소요되었으며, 압 축된 자료를 푸는 작업인 Conversion과정에는 128 word를 사용하여 27분이 소요되었고 얻어진 파일의 크기는 23.226 Megabytes이었다.

2. Interface 표일

Readout과 Conversion 과정을 거쳐 얻어진 파일은 범용성이 있는 Binary 형태의 파일이므로, 우리는 해독하기 위하여 Binary Data를 Engineering Data로 변환하기 위한 Interface 파일을 제 작하였다. Interface 파일을 제작하기 위하여, B747-400 항공기 제작사인 Boeing사가 공급한 DFDAU Specification과 AACO 가 제공한 Interface 파일 작성지침을 참조하였다. 완성된 Interface 파일은 332 Line의 분량으로, 작성지침에서 요구한 것과 같이 매 Line을 16 개의 Column(Field)으로 구성하였으며, Interface File의 각 Line은 각각의 Parameter를 Engineering Data로 변환하는 원칙을 정의하고 있다. 그림 2 는 본 연구를 위해 작성된 Interface 파일의 항법 에 관련된 parameter들의 일부이다.

AACO Incorporated Maintenance \& Analysis Ground Station A/C Database ; B747-400 DFDAC ctg - Engines Document D243U316 rev †, 3-87 			1
; Nav	"Alt "" Fine"" Feet"',	" L000 9040000001711201 UAR 0	
ALTC	"Alt ""Coarse"n Feet"	L000 9020500406411201 SDR -65536	65536
CAS	CAS"" Knots"'	L000 9020200001911203 UDR 0	1024
TAS	TAS""	L000 9020200206111203 UDR 0	1024
MACH	Mach""	L000 9023000004911203 UDR 0	1.024
HDNG	"" Head"" Deg""	L000910 1000000311202 USR 0	360
V/IS	"Vert "" Speed""	L000 9020100003511202 SDR -8192	8192
RALT	"Radio "" Alt"" Feet""	L000 9020000003311202 SDR -4096	4096
BALT	"Baro "" Att", Feet"'	L000 9020500603711201 SDR -65536	65536
CBNPR	"Cabin "" Press""	L0009022000 102111203 UDR 0	32
LOCAL	Local ${ }^{\prime \prime \prime}$ izer"" Dots" ${ }^{\text {" }}$	L000 9040100000511202 SAR -400	400
	G/S"" Dots" ${ }^{\text {" }}$	L000 9040100000711202 SAR -800	800

<그림 2> B747-400 항공기 비행자료 변환용 Interface 파일의 일부

3. 비행자료 헤독

완성된 Interface 파일을 Readout된 파일에 적용한 결과, 본 연구에 사용된 B747-400항공기의 SSFDR 에는 46,449 frame(51시간 36분 36초, 1 frame $=4$ 초) 동안에 이루어진 4편의 비행자로와 종전에 기록되었던 비행자료 일부가 있었다. 기록된 비행자료에는 그림 2에서 표현된 비행관련 parameter들을 비롯하여 엔진계통, 자세와 조종계통, 항법계통, 경고계통, 위치 및 시간정보 등

모두 315종류의 parameter들이며, 이들은 1초, 2초, 4초 또는 64초마다 기록되는 parameter들로 숫자와 문자로 구분된다. 여기서 소개할 자료는 1999 년 3 월 1 일 제주 공항을 이륙하여 목적지인 김포공항으로 향하던 중 회항을 위한 것으로 보이는 역방향 비행을 하였다가 다시 최초목직지공 항인 김포공항에 3 월 2 일 착륙한 $40,394 \sim 42,097$ frame사이의 비행자료이다.

<그림 3> B747-400 항공기 비행자로의 해독된 그래픽 화면
그림 3 은 해독된 그래픽 비행자료의 일부분으로 시간(GMT Mn:Sec), 속도(CAS), 고도(Baro Alt), 기수방위(Head), 대지속도(Ground Speed), 조종사교신(VHF : $1=$ 조종사 key 조작) parameter들을 나타내고 있다.

IV. 비행자료 분석

1. 헤독된 비행자료 분석

해독된 비행자료에는 연도를 나타내는 parameter가 "99"로 기록되어 1999년도, 달을 나타내는 parameter에서는 " 3 "로 기록되어 3월, 일자를 나타내는 parameter에서는 "1"로 기록되어 있어 1999년 3월 1일에서 2 일 사이에 이루어진 비행임을 조종사가 작성한 비행일지를 통하여 확인할 수 있었다. 조종사의 입력행위에 의해 64초마다 비행기록장치에 기록되는 출발지1(Depart chr1\&2), 출발지2(Depart chr3\&4), 목적지1(Dest chr1\&2), 목적지2(Dest chr3\&4) parameter들에 서는 각 2 개의 문자들이 $\mathrm{RK}, \mathrm{PC}, \mathrm{RK}, \mathrm{SS}$ 로 기록되어 항공기는 RKPC (제주)에서 출발하여 도착 예정지인 RKSS (김포)로 향하게 되어있었다(그림 4).

A/C ID: $\square_{\text {GIT }}$		Readout:11 Mar 1999			File: \square s	501.mbf	Units: Eng	Group 14
		Date	Date	Date	Depart	Depart	Dest	Dest
Frame	Mn:Sec	Month	Day	Year	Chr182	Chr3\&4	Chr1\&2	Chr $3 \& 4$

99
41727 9:31
RK
41728 9:35

PC

$41729 \quad 9: 39$
RK
$41730 \quad 9: 43$
SS
$41731 \quad 9: 47$
<그림 4>64초마다 기록되는 해독된 비행자로의 이륙 및 착륙공항

A/C ID: Frane	$\begin{aligned} & \text { GMT } \\ & \mathrm{Mn}: \mathrm{Sec} \end{aligned}$	Readout:11 Mar 1999 Fil			File: $\square_{\text {s01.mbf }}$			Group 14 Long MSP
		CAS	Baro Alt	Head	Ground Speed	VHF	Lat HSP	
41730	9:43	248		343.3	289		36.91	126.47
		248	15680	343.3	288	Keyed		
		248		343.3	288	Keyed		
		248	15616	343.3	288	Keyed		
41731	9:47	248		34.3 .3	288	Keved	36.91	126.47
		247	15584	343.5	288	Keyed		
		247		343.5	288	Keyed		
		247	15520	943.7	288			
41732	9:51	247		344.0	288			126.47
		248	15456	344.4 344.9	288	-	36.91	
		248	15392	345.4	289			
41733	9:54	248		345.8	289	-		126.47
		248	15296	346.3	290			
		247		346.6	290	Keyed	37.60	
		247	15232	947.2	291	Keyed		
		248		347.5	291			126.47
41734	9:59	247	15136	348.0	292	.		
		247		348.6	292	.	37.00	
		267	15079	368 9	292			

<그림 5> 위도(Lat MSP)와 경도(Long MSP)가 포함된 해녹된 비행자료

그림 5 는 해독된 비행자료의 일부분으로 4초마다 기록되는 시간(GMT Mn:Sec), 매초마다 기록 되는 속도(CAS), 2초마다 기록되는 고도(Baro Alt), 매초마다 기록되는 기수방위(Head), 매초마 다 기록되는 대지속도(Ground Speed), 매초마다 기록되는 조종사교신(VHF; keyed 조종사교신), 4초마다 기록되는 위도(Lat MSP)와 경도(Long MSP) parameter들을 나타내고 있다.
 <그림 6> 제주공항 이륙시 착륙장치 관련 해독된 비행자료

그림 6 은 해독된 비행자료의 일부분으로 4초마다 기록되는 시간(GMT Mn:Sec), 매초마다 기 록되는 조종사교신(VHF와 HF), 4초마다 기록되는 착륙장치손잡이 위치(Gear Lever), 매초마다 기록되는 착륙장치의 접지상태(A/G1, $\mathrm{A} / \mathrm{G} 2, \mathrm{~A} / \mathrm{G} 3, \mathrm{~A} / \mathrm{G} 4)$ parameter들을 나타내고 있다. 착륙장 치손잡이 위치는 4초마다 기록되므로 분석에 따라서 51 분 53 초 또는 51 분 55 초에 $\mathrm{L} / \mathrm{G} \mathrm{Up}$ 조작을 하였던 것으로 해석이 가능하며, 이는 4초보다 적은 3.99 초 이내의 오차 범위가 있을 수 있다. 착 륙장치의 위치에서는 전방착륙장치가 활주로로부터의 부양이 51 분 49초, 주착륙장치의 부양은 51 분 50 초로 나타나고 있으나 이는 정확하게 1초 간격을 두고 부양하였다고 해석할 수 도 있으나, 엄밀히 말하면 1초99이내의 간격을 두고 부양하였다고 할 수 있다. 또한 주 착륙장치(A/G1, $\mathrm{A} / \mathrm{G} 2, \mathrm{~A} / \mathrm{G} 3$)가 동시에 부양된 것으로 나타나고 있으나 엄밀히 해석하자면 0.99초 이내의 오차를 포함하고 있다. 이는 비행기록장치에 기록되는 시간 간격이 최소 1 초이기 때문이다.

그림 7은 해독된 엔진출력관련 비행자료 그래프로 매초마다 기록되는 B747-400항공기의 4기 엔 진 모두가 정상적인 작동을 하였음을 보여준다.

2. 시간별 항공기 조작

엔진시동으로부터 정지까지의 시간(초)에 대한 주요 항공기 조작은 아래와 같으며, 매초마다 기록되는 VHF(Very High Frequency) parameter는 조종승무원이 ATC(Air Traffic Control)와의 교신을 위해 key를 작동했음을 의미한다. 다음은 UTC(Co-Ordinated Universal Time)시간별 본 연구관련 비행자료 내용들을 나타내었다.

- 23:20:16 \#4엔진 시동, 연로 5,990Gallons
- 23:21:16 \#3엔진 시동
- 23:22:02 \#2엔진 시동
- 23:22:45 \#1엔진 시동
- 23:51:17 활주로 정대, 기수방위 245°
- 23:51:49 전방 착륙장치 부양됨, 속도 149 knots , 기수 들림각 5.11° (그림 6)
- 23:51:50 주 착륙장치 부양됨, 속도 154 knots , 기수 들림각 7.67° (그림 6)
- 23:51:54 착륙장치 접음, 고도 192 ft , 속도 157 knots , 기수 들림각 12.08° (그림 6)
- 23:53:05 Flap Up, 고도 3,160 ft, 속도 164 knots
/ 중 약 /
- 00:05:17 VHF 3초간 key조작,
- 00:09:26 VHF 2초간 key조작,
- 00:09:30 VHF 2초간 key조작,
- 00:09:39 VHF 2초간 key조작,
- 00:09:45 VHF 6초간 key조작,
- 00:09:56 VHF 5초간 key조작,
- 00:10:24 VHF 2초간 key조작,
- 00:10:30 VHF 30초간 key조작,
- 00:11:14 VHF 25초간 key조작,
- 00:11:58 VHF 1초간 key조작,
- 00:12:02 VHF 7초간 key조작,
- 00:12:11 VHF 3초간 key조작,
- 00:12:15 VHF 3초간 key조작,
- 00:12:22 VHF 1초간 key조작,
- 00:12:32 VHF 5초간 key조작,
- 00:13:49 VHF 2초간 key조작,
- 00:13:56 VHF 26초간 key조작,
- 00:14:25 VHF 3초간 key조작,
- 00:14:32 VHF 6초간 key조작,
- 00:14:52 VHF 1초간 key조작,
- 00:15:40 VHF 3초간 key조작,
- 00:16:16 VHF 4초간 key조작,
- 00:16:31 VHF 1초간 key조작,
- 00:17:13 VHF 2초간 key조작,
- 00:18:13 VHF 5초간 key조작,
- 00:21:21 VHF 2초간 key조작,
- 00:21:28 VHF 4초간 key조작,
- 00:21:44 VHF 3초간 key조작,
- 00:21:48 VHF 7초간 key조작,
- 00:22:15 VHF 3초간 key조작,
- 00:22:23 VHF 4초간 key조작,
- 00:23:26 VHF 6초간 key조작, (그림8의 (2)부근지점)
- 00:25:26 VHF 5초간 key조작,
- 00:28:25 VHF 1초간 key조작,
- 00:28:30 VHF 2초간 key조작,
- 00:28:35 VHF 1초간 key조작,
- 00:28:50 VHF 1초간 key조작,
- 00:29:08 VHF 1초간 key조작,
- 00:29:52 VHF 3초간 key조작,
- 00:29:59 VHF 4초간 key조작,
- 00:30:44 VHF 4초간 key조작,
- 00:32:25 VHF 1초간 key조작,
- 00:34:48 VHF 12초간 key조작,
- 00:43:43 VHF 11초간 key조작,
- 00:47:25 VHF 4초간 key조작, (그림8의 (3)부근지점)
- 00:47:56 VHF 2초간 key조작,
/ 중 약 /
- 00:56:05 강하시작
- 01:14:56 1차 Flap Down (1.01$)$, 고도 6,200 ft, 속도 233 knots
- 01:15:48 2차 Flap Down (5.01ㅇ), 고도 5,100 ft, 속도 203 knots
- 01:19:50 3차 Flap Down (10.2°), 고도 $1,824 \mathrm{ft}$, 속도 194 knots
- 01:20:28 착륙장치 내림
- 01:20:48 4차 Flap Down (20.01°), 고도 1,790 ft, 속도 165 knots
- 01:21:20 5차 Flap Down (30.01ํ), 고도 1,760 ft, 속도 156 knots
- 01:23:34 주 착륙장치 활주로 접지 137 knots
- 01:23:35 전방 착륙장치 활주로 접지 135 knots 피치3도
- 01:23:41 역추력 장치 작동시작
- 01:24:00 역추럭장치 완료
- 01:34:13 엔진 정지, 연료 2,860Gallons

3. 비행경로분석

그림8의 (1)지점인 제주공항 활주로24에서 1999년 3월1일 23시51분50초에 이륙하여 항로 B576 을 따라 FL270으로 순항비행하면서 목적지 공항인 김포로 향하였다. 그림8의 (2)지점 도착하기 전 조종사는 3 월 2 일 00 시 09 분에서 00 시 24 분 사이에 ATC 와의 교신으로 보이는 3 차례의 20 초 이 상(00:10:30 30초간, 00:11:14 25초간, 00:13:56 26초간)의 교신을 포함하여 31차례의 조종사의 key 조작은 회항 결정하기 위한 통화로 추측된다.

<그림 8> B747항공기의 제주-김포간 비행경로

00 시 24 분 12 초 그림 8 의 (2)지점 (북위 36.826°, 동경 126.56°)에서 조종사는 기수방위를 340° 에서 좌 선회하여 기수를 이륙하였던 제주공항으로 그리고 FL230로 고도를 변경하였다. 21분간의 이륙공 항으로 향하던 B747-400항공기는 21분간의 회항비행을 하면서 지속적으로 13 차례 ATC와의 교 신을 하였다. 회항도중 조종사는 64 초마다 기록되는 출발지 $1(\mathrm{RK})$, 출발지 $2(\mathrm{PC})$, 목적지 $1(\mathrm{RK})$,

목적지2(SS) parameter들을 변경하지 않았었다. 조종사는 00시45분57초 그림8의 (3)지점(북위 34.981°, 동경 126.563°) 부근에서 ATC 와의 교신이 있은 뒤 항공기를 우선회하여 처음 목표한 목적 지 김포공항으로 기수를 유지하였다. 조종사는 지속적인 비행으로 3월2일 01시23분35초에 그림8 의 (4)지점 목적지 김포공항에 안착하였다.

V. 회항관련규정 및 비행행위분석

1. 회항 관런규정

조종사는 항공기의 안전운항을 위하여 최초 목적지 공항 및 항로상의 상황 픙에 따라 비행 중 회항을 결정을 할 수 있다. 그러나 이러한 조종사의 행위는 항행안전에 관련된 규정에 적합하여 야 한다. 비행 중 회항결정과 관계되는 규정들은 다음과 같다.

○ 회항결정(운항기술기준 제404조)

(1) 기장은 제 2 항을 제외하고 항공기의 엔진고장 또는 손상을 방지하기 위하여 엔진을 정지시 킬 경우에는 안전하게 착륙을 할 수 있는 가장 가까운 착륙적합공항에 항공기를 착륙시켜 야 한다.
(2) 기장은 엔진이 3 개 이상인 항공기에 있어 1 개의 엔진이 고장 또는 정지된 경우, 다음 각 호 를 고려하여 선정한 공항으로 비행하는 것이 가장 가까운 착륙적합공항에 착륙하는 것 못 지 않게 안전하다고 판단되면 그 공항으로 계속 비행을 할 수 있다.

1. 고장의 성격과 비행을 계속할 경우 발생할 수 있는 기계적 문제점
2. 엔진정지 시점에서의 고도, 중량 및 사용가능 연료
3. 항로 및 착륙가능 공항의 기상
4. 항공교통의 혼잡도
5. 지형의 종류
6. 사용하고자 하는 공항의 친숙도
(3) 기장은 비행 중 발생한 엔진의 정지에 대하여 가능한 한 빨리 해당 항공교통관제소에 보고 하여야 하며 비행의 진행사항에 대한 정보를 위하여 연락을 유지하여야 한다.
(4) 기장은 가장 가까운 착륙적합공항 이외의 공항에 착륙하였을 경우 가장 가까운 공항 이외 의 공항을 선정한 이유를 설명하는 서면 보고서를 소속 항공사에 제출하여야 하며 해당 항 공사는 조종사가 그의 모기지에 돌아온 후 10 일 이내에 보고서의 사본에 의견을 첨부하여 건설교통부장관에게 제출하여야 한다.

O 최초 착륙예정 비행장 등의 기상상태(항공법 시행규칙 제211조)
제 209 조제 1 항제 7 호 및 제 8 호의 규정에 의한 최초착륙예정비헹장과 교체비헹장의 기상상태는 당해 항공기가 도착하는 때 당해 비행장의 착륙에 직합한 기상 최저치 이상이어야 한다.
\bigcirc 계기비행기상 조건 시 착륙(운항기술기준 제454조)
조종사는 비행시정이 해당 표준계기 접근절차에 규정된 시정치 이하인 경우 착륙을 하여서는 아니 된다.

O 목적지로의 계기비행 지속 (ICAO Annex 6-I 4.4.1.1 및 운항기술기준 제449조)
조종사는 착륙예정비행장이나 직어도 하나의 교체비행장의 최신 기상정보가 도착예정시간에 설정된 계기접근 기상 최저치 이상이 되지 않으면, 그 비행장에 착륙을 하기 위하여 계기비행 을 계속하여서는 아니 된다.

0 비행허가 : 항로상에서의 비행허가 수정 또는 재허가(운항기술기준 제554조)
(1) 항로상에서 비행허가 사항을 수정하려는 자는 수정사항에 대해 기록을 하여야 한다.
(2) 항로상에서 비행허가의 수정 또는 재허가를 위하여서는 항로, 공항선정, 빕정연료량이 적합 하여야 한다.
(3) 기상정보의 변화로 인하여 공항이 본래의 비행허가와 부적합하게 되는 경우 계획된 공항으 로의 계속비행을 하여서는 아니 된다.

○ 항공교통관제기관의 허가 : 의도뇐 변경(운항기술기준 제 428 조제 1 항제 2 호)
도착지를 변경할 경우 비행게획의 변경요청에 포함되어야 할 내용 : 항공기 호출부호, 비행조 건, 항로변경이 시작되는 위치가 포함된 변경된 공항까지의 변경된 항로에 관한 세부사항, 변 경된 예정시간, 교체공항 기타 관련된 정보사항
\bigcirc 항공교통관제 허가의 준수(운항기술기준 제 424 조)
(1) 기장은 비상사태를 제외하고 항공교통관제(ATC)기관으로부터 허가를 득한 사항에 대해 수 정허가를 득하지 아니하고는 이를 빗어나서는 아니된다.
(2) 기장은 관제비행이 요구되는 공역에서 운항시 비상사태를 제외하고 항공교통관제(ATC) 지 시를 따라야 한다.
(3) 비상사태로 항공교통관제(ATC) 허가 또는 지시를 벗어난 경우 기장은 가능한 신속히 그 사항을 관제기관에 알려야 한다.

2. 비행행위분석

우리는 B747-400항공기 비행기록장치에 기록된 제주-김포간 비행에서 엔진계통(그림 7), 자세 와 조종계통, 항법계통, 경고계통, 위치 및 시간정보 등 모두 315종류의 parameter들을 분석하면 서 단지 비행 중 항로를 바꾸어 역비행한 행위이외에 다른 항공기 결함이나 이상현상을 발견하 지 못하였다. 이는 항공기의 엔진고장 또는 손상의 경우에 대하여 회항졀정을 할 수 있게 한 운 항기술기준 제 404 조 규정과는 관계가 없는 것으로 판단할 수 있으며, 목적지 공항 또는 항로상의 문제 등 기타의 경우에 해당된다고 볼 수 있다. 최초착륙예정 비행장 등의 기상상태(항공법 시행 규칙 제211조) 및 계기비행기상 조건 시 착륙(운항기술기준 제454조)규정에 명시된 내용을 바탕 으로 우리는 이 비행이 제주 공항 이륙당시 목적지 공항인 김포공항이 착륙하기에 적합한 기상

상태이었던 것으로 판단할 수 있으며, 항공기가 그림8의 (2)지점에 도착하기 전 조종사의 VHF사 용횟수와 시간(15분간 31 회 교신)으로 보아 목적지 공항이 갑자기 계기비행기상조건이하의 기상 으로 변화되었음을 예측할 수 있다. 조종사는 그림8의 (2)지점부근에서 좌선회하여 그림8의 (3)지 점까지 21 분간의 역 항로 비행은 제주공항으로 회항을 위한 비행으로 유추할 수 있으나, 이 21 분 간의 비행 중 항행안전과는 관련이 없는 조종사에 의해 비행기록장치에 기록되는 도착지 공항문 자(RKSS)는 변경되지 않았었다. 조종사는 그림8의 (3)지점에 도달하기 전 조종사의 VHF사용횟 수와 시간(21 분간 13 회 교신)으로 보아 목적지 공항이 착륙에 적합한 기상상태로 급격하게 바뀌 었음을 예측할 수 있다. 조종사는 그림8의 (3)지점부근에서 우선회하여 최초꼭적지 공항인 김포공 항을 향해 지속적인 비행을 하였다.

우리는 비행자료기록장치에 기록된 비행자료를 바탕으로 비행 중 회항을 결심하고 비행한자료 에 대하여 부분적으로 당시의 상황을 유추핡 수 있었으나 비행자료기록장치에 기록된 내용만으 로 당시의 전반적인 상황은 파악하지 못하였다. 따라서 항행안전관련 비행행위에 대한 분석은 FDR 및 CVR(Cockpit Voice Recorder)자로, ATC와의 교신 내용, 기상정보자료, 레이더자료 둥 당시의 여러 자료를 종합적으로 분석을 하여야만 정확한 상황을 유추할 수 있다. 본 연구에서 항 공기의 비행경로로 보아 비행도중 회항 상황을 유추핱 수 있는 비행자료를 FDR 분석자료로부터 찾아 날 수 있었다. 또한 그 직접적인 원인이 항공기의 이상현상에 의한 것이 아니었으며(그립 7), 조종사가 VHF 를 사용한 교신시점과 항법장비의 활용 그리고 항공기의 위치 등으로 미루어 보아, 항로상의 문제보다는 목적지 공항의 기상악화에 의해 비행 중 목적지 공항을 변경한 비행 이었다고 유추하였다. 그림8의 (3)지점까지의 수십 차례 이루어진 조종사와 ATC 의 교신으로 횟 수로 보아 항로상에서의 비행허가 수정 또는 재허가(운항기술기준 제554조), 의도된 변경에 따른 항공교통관제기관의 허가(운항기술기준 제428조) 및 항공교통관제 허가의 준수(운항기술기준 제 424조)규정을 조종사가 준수하였던 것으로 판단된다.

VI. 결 론

우리는 B 747 -400 항공기의 SSFDR에 저장된 비행자료를 Readout하여 Interface 파일 작성과 정을 거쳐 비행자로의 해독 및 분석까지의 각 단계를 싱공적으로 수행하였으며, 본 연구를 통하 여 비행자료기록장치로부터 획득할 수 있는 모든 자료를 활용하여 회항과 관련된 부분적인 원인 을 유추할 수 있었다. 우리는 비행자료기록장치로부터 획득할 수 있는 비행자료로만은 조종사의 비행행위나 항공기의 운항상태에 대한 분석은 가능하나, 비행당시의 조종사의 교신내용이나 기상 정보자료, 레이더 자료 등이 부재된 상태에서 당시의 정확한 상황을 파악하기에는 한계가 있음을 확인하였다. 이미, 비행기록장치분석에 대한 한계를 인지한 항공선진국들은 비행기록자료를 바탕 으로 운항당시의 종합적인 상황을 파악할 수 있는 APMS(Aviation Performance Measuring System) 및 GAIN(Global Aviation Information Network)같은 통합적인 항행안전체계를 추진 중

에 있다. 이는 우리의 연구방향과 범위도 항공 사고예방 및 항행안전기술 개발을 위하여 항공선 진국에서 중장기적으로 추진하고있는 통합적인 항행안전체계 방식으로 향하여야 될 필요가 있음 을 의미한다.

참고문헌

(1) AACO Inc., Operation of the Maintenance and Analysis Ground Station, Doc. No. GGA-0011-001, Seattle, WA., 1996. 12
(2) ARINC 429, Mark 33 Digital Information Transfer System (DITS), 1995. 9
(3) ARINC 542A, Digital Flight Data Recorder, 1988. 1
(4) ARINC 573-7, Mark 2 Aircraft Integrated Data System (AIDS), 1974. 12
(5) ARINC 717-10, Flight Data Aquisition and Recording System, 1998. 4
(6) Boeing, Signal Details - Flight Recorder/AIDS, 1986. 6
(7) Boeing, 747-400 Digital Flight Data Acquisition Card Interface Control Document, 1992.2
(8) 항공법, "항공관계 법규집" 노해출판사 2002.
(9) FDR 분석 및 안전성 평가기술개발, 항국항공우주연구원, 2001. 12. 31
(10) 건설교통부, 항공정보간행물(AIP: Aeronautical Information Publication), 7th edition, 2001. 3
(11) 신대원 외4, 비행기록자료(FDR)에 의한 B747-400항공기의 나리타-김포 비행분석, 한국항공 운항학회지 제9권 제2호, 2001. 12, pp. 63~76.
(12) ICAO Annex 6, Paet I, "Operation of Aircraft," 2001. 11. 1
(13) 운항기술기준, 건설교통부 항공국, 2002. 6. 12
(14) 신대원 외3, FDR 을 이용한 목적지 공항변경 항공기의 비행자료 분석, 한국항공운항학회지 제 10 권 제 1 호, 2002. 12 , pp. 21~34.

[^0]: * 한국항공우주연구원 품질인증센터

 연락저자, E-Mail : dwshin@kari.re.kr
 대전광역시 유성구 어은동 45
 ** 한국항공대학교 항공운항학과 부교수

